Non-invasive chronic kidney disease risk stratification tool derived from retina-based deep learning and clinical factors
- PMID: 37330576
- PMCID: PMC10276847
- DOI: 10.1038/s41746-023-00860-5
Non-invasive chronic kidney disease risk stratification tool derived from retina-based deep learning and clinical factors
Abstract
Despite the importance of preventing chronic kidney disease (CKD), predicting high-risk patients who require active intervention is challenging, especially in people with preserved kidney function. In this study, a predictive risk score for CKD (Reti-CKD score) was derived from a deep learning algorithm using retinal photographs. The performance of the Reti-CKD score was verified using two longitudinal cohorts of the UK Biobank and Korean Diabetic Cohort. Validation was done in people with preserved kidney function, excluding individuals with eGFR <90 mL/min/1.73 m2 or proteinuria at baseline. In the UK Biobank, 720/30,477 (2.4%) participants had CKD events during the 10.8-year follow-up period. In the Korean Diabetic Cohort, 206/5014 (4.1%) had CKD events during the 6.1-year follow-up period. When the validation cohorts were divided into quartiles of Reti-CKD score, the hazard ratios for CKD development were 3.68 (95% Confidence Interval [CI], 2.88-4.41) in the UK Biobank and 9.36 (5.26-16.67) in the Korean Diabetic Cohort in the highest quartile compared to the lowest. The Reti-CKD score, compared to eGFR based methods, showed a superior concordance index for predicting CKD incidence, with a delta of 0.020 (95% CI, 0.011-0.029) in the UK Biobank and 0.024 (95% CI, 0.002-0.046) in the Korean Diabetic Cohort. In people with preserved kidney function, the Reti-CKD score effectively stratifies future CKD risk with greater performance than conventional eGFR-based methods.
© 2023. The Author(s).
Conflict of interest statement
T.H.R. was a former scientific adviser and owned stocks in Mediwhale. H.K. and G.L. are employees of Mediwhale, and G.L. owns stocks in Mediwhale. T.H.R. and G.L. hold the following patents that might have been affected by this study: 10–2018–0166720(KR), 10–2018–0166721(KR), 10–2018–0166722(KR), 62/694,901(US), 62/715,729(US), and 62/776,345 (US). All other authors declare no competing interests.
Figures



References
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous