Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Oct 10:894:164822.
doi: 10.1016/j.scitotenv.2023.164822. Epub 2023 Jun 17.

Pilot-scale aerobic granular sludge reactors with granular activated carbon for effective nitrogen and phosphorus removal from domestic wastewater

Affiliations

Pilot-scale aerobic granular sludge reactors with granular activated carbon for effective nitrogen and phosphorus removal from domestic wastewater

Y V Nancharaiah et al. Sci Total Environ. .

Abstract

Aerobic granular sludge (AGS) is a breakthrough biotechnology of 21st century and an innovative alternative to activated sludge for treating wastewater. Concerns on long-start up periods for development of AGS and stability of granules are impeding its widespread implementation for treating low-strength domestic wastewater especially in tropical climate conditions. Addition of nucleating agents have been shown to improve development of AGS while treating low-strength wastewaters. There are no previous studies on AGS development and biological nutrient removal (BNR) in the presence of nucleating agents during treatment of real domestic wastewater. This study investigated AGS formation and BNR pathways while treating real domestic wastewater in a 2 m3 pilot-scale granular sequencing batch reactor (gSBR) operated without and with granular activated carbon (GAC) particles. The gSBRs were operated under tropical climate (T ≈ 30 °C) for >4-years to evaluate the effect of GAC addition on granulation, granular stability and BNR at pilot-scale. Formation of granules was observed within 3 months. MLSS values of 4 and 8 g/L were recorded within 6 months in gSBRs without and with GAC particles, respectively. The granules had an average size of 1.2 mm and SVI5 of 22 mL/g. Ammonium was mainly removed through nitrate formation in the gSBR without GAC. But, ammonium was removed by short-cut nitrification via nitrite due to washout of nitrite oxidizing bacteria in the presence of GAC. Phosphorus removal was much higher in gSBR with GAC due to the establishment of enhanced biological phosphorus removal (EBPR) pathway. After 3 months, the phosphorus removal efficiencies were at 15 % and 75 %, respectively, without and with GAC particles. The addition of GAC led to moderation in bacterial community and enrichment of polyphosphate-accumulating organisms. This is the first ever report on pilot-scale demonstration of AGS technology in the Indian sub-continent and GAC addition on BNR pathways.

Keywords: Aerobic granules; Biological treatment; Nutrient removal; Phosphorus removal; Sewage treatment; Wastewater.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

Cited by

LinkOut - more resources