Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Nov;90(5):2116-2129.
doi: 10.1002/mrm.29766. Epub 2023 Jun 18.

High-fidelity direct contrast synthesis from magnetic resonance fingerprinting

Affiliations
Free article

High-fidelity direct contrast synthesis from magnetic resonance fingerprinting

Ke Wang et al. Magn Reson Med. 2023 Nov.
Free article

Abstract

Purpose: This work was aimed at proposing a supervised learning-based method that directly synthesizes contrast-weighted images from the Magnetic Resonance Fingerprinting (MRF) data without performing quantitative mapping and spin-dynamics simulations.

Methods: To implement our direct contrast synthesis (DCS) method, we deploy a conditional generative adversarial network (GAN) framework with a multi-branch U-Net as the generator and a multilayer CNN (PatchGAN) as the discriminator. We refer to our proposed approach as N-DCSNet. The input MRF data are used to directly synthesize T1-weighted, T2-weighted, and fluid-attenuated inversion recovery (FLAIR) images through supervised training on paired MRF and target spin echo-based contrast-weighted scans. The performance of our proposed method is demonstrated on in vivo MRF scans from healthy volunteers. Quantitative metrics, including normalized root mean square error (nRMSE), peak signal-to-noise ratio (PSNR), structural similarity (SSIM), learned perceptual image patch similarity (LPIPS), and Fréchet inception distance (FID), were used to evaluate the performance of the proposed method and compare it with others.

Results: In-vivo experiments demonstrated excellent image quality with respect to that of simulation-based contrast synthesis and previous DCS methods, both visually and according to quantitative metrics. We also demonstrate cases in which our trained model is able to mitigate the in-flow and spiral off-resonance artifacts typically seen in MRF reconstructions, and thus more faithfully represent conventional spin echo-based contrast-weighted images.

Conclusion: We present N-DCSNet to directly synthesize high-fidelity multicontrast MR images from a single MRF acquisition. This method can significantly decrease examination time. By directly training a network to generate contrast-weighted images, our method does not require any model-based simulation and therefore can avoid reconstruction errors due to dictionary matching and contrast simulation (code available at:https://github.com/mikgroup/DCSNet).

Keywords: convolutional neural network; direct contrast synthesis; generative adversarial network; magnetic resonance fingerprinting.

PubMed Disclaimer

Similar articles

Cited by

References

REFERENCES

    1. Pierpaoli C. Quantitative brain MRI. Top Magn Reson Imaging. 2010;21:63.
    1. Tanenbaum L, Tsiouris A, Johnson A, et al. Synthetic MRI for clinical neuroimaging: results of the magnetic resonance image compilation (MAGiC) prospective, multicenter, multireader trial. Am J Neuroradiol. 2017;38:1103-1110.
    1. Tamir J, Uecker M, Chen W, et al. T2 shuffling: sharp, multicontrast, volumetric fast spin-echo imaging. Magn Reson Med. 2017;77:180-195.
    1. Wang K, Gong E, Zhang Y, Banerjee S, Zaharchuk G, Pauly J. OUTCOMES: rapid under-sampling optimization achieves up to 50. arXiv:2103.04566; 2021.
    1. Ma D, Jiang Y, Chen Y, et al. Fast 3D magnetic resonance fingerprinting for a whole-brain coverage. Magn Reson Med. 2018;79:2190-2197.