Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation

Machine learning of dissection photographs and surface scanning for quantitative 3D neuropathology

Harshvardhan Gazula et al. bioRxiv. .

Update in

  • Machine learning of dissection photographs and surface scanning for quantitative 3D neuropathology.
    Gazula H, Tregidgo HFJ, Billot B, Balbastre Y, Williams-Ramirez J, Herisse R, Deden-Binder LJ, Casamitjana A, Melief EJ, Latimer CS, Kilgore MD, Montine M, Robinson E, Blackburn E, Marshall MS, Connors TR, Oakley DH, Frosch MP, Young SI, Van Leemput K, Dalca AV, Fischl B, MacDonald CL, Keene CD, Hyman BT, Iglesias JE. Gazula H, et al. Elife. 2024 Jun 19;12:RP91398. doi: 10.7554/eLife.91398. Elife. 2024. PMID: 38896568 Free PMC article.

Abstract

We present open-source tools for 3D analysis of photographs of dissected slices of human brains, which are routinely acquired in brain banks but seldom used for quantitative analysis. Our tools can: (i) 3D reconstruct a volume from the photographs and, optionally, a surface scan; and (ii) produce a high-resolution 3D segmentation into 11 brain regions per hemisphere (22 in total), independently of the slice thickness. Our tools can be used as a substitute for ex vivo magnetic resonance imaging (MRI), which requires access to an MRI scanner, ex vivo scanning expertise, and considerable financial resources. We tested our tools on synthetic and real data from two NIH Alzheimer's Disease Research Centers. The results show that our methodology yields accurate 3D reconstructions, segmentations, and volumetric measurements that are highly correlated to those from MRI. Our method also detects expected differences between post mortem confirmed Alzheimer's disease cases and controls. The tools are available in our widespread neuroimaging suite "FreeSurfer" ( https://surfer.nmr.mgh.harvard.edu/fswiki/PhotoTools ).

PubMed Disclaimer

Publication types

LinkOut - more resources