Development and therapeutic potential of allosteric retinoic acid receptor-related orphan receptor γt (RORγt) inverse agonists for autoimmune diseases
- PMID: 37336069
- DOI: 10.1016/j.ejmech.2023.115574
Development and therapeutic potential of allosteric retinoic acid receptor-related orphan receptor γt (RORγt) inverse agonists for autoimmune diseases
Abstract
The transcription factor retinoic acid receptor-related orphan receptor γt (RORγt) is an attractive drug target for some autoimmune diseases owing to its roles in the differentiation of human T helper 17 (Th17) cells which produce pro-inflammatory cytokine interleukin (IL)-17. RORγt agonists and inverse agonists are classically targeted to the hydrophobic and highly conserved orthosteric binding pocket of RORγt ligand binding domain (LBD). Although successful, this approach also brings some challenges, including off-target effects due to lack of selectivity over other nuclear receptors (NRs). Allosteric regulation of RORγt by synthetic small molecules has recently emerged as novel research interests for its interesting modes of action (MOA), satisfying bioactivity profile and improved selectivity. In this review, we delineated the discovery and identification of the allosteric pocket of RORγt. Subsequently, we focused on examples of small molecules that allosterically inhibit RORγt, with a central attention on structural-activity-relationship (SAR) information, biological activity, pharmacokinetic (PK) property, and the ligand binding mode of these compounds. We also discussed the potential role of RORγt allosteric inverse agonists as small molecule therapeutics for autoimmune diseases.
Keywords: Allosteric binding pocket; Autoimmune diseases; Inverse agonists; RORγt.
Copyright © 2023 Elsevier Masson SAS. All rights reserved.
Conflict of interest statement
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Miscellaneous
