Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1986 Aug 15;261(23):10915-21.

Purification and initial characterization of a protein from skeletal muscle that caps the barbed ends of actin filaments

  • PMID: 3733738
Free article

Purification and initial characterization of a protein from skeletal muscle that caps the barbed ends of actin filaments

J F Casella et al. J Biol Chem. .
Free article

Abstract

We describe herein the purification of a protein from skeletal muscle that binds to ("caps") the morphologically defined barbed end of actin filaments. This actin-capping protein appeared to be a heterodimer with chemically and immunologically distinct subunits of Mr = 36,000 (alpha) and 32,000 (beta), Rs = 37 A, s20,w = 4.0 S, and a calculated native molecular weight of approximately 61,000. The protein was obtained in milligram quantities at greater than 95% purity from acetone powder of chicken skeletal muscle by extraction in 0.6 M KI, precipitation with ammonium sulfate, sequential chromatographic steps on DEAE-cellulose, hydroxylapatite, and Sephacryl S-200, followed by preparative rate zonal sucrose density gradient centrifugation. In immunoblots of myofibrillar proteins, affinity-purified antibodies selectively recognized protein bands of the same molecular weight as the subunits of the capping protein to which they were made, indicating that the isolated capping protein is a native myofibrillar protein, and not a proteolytic digestion product of a larger muscle protein. A specific interaction of the capping protein with the barbed end of actin filaments was indicated by its ability to inhibit actin filament assembly nucleated by spectrin-band 4.1-actin complex in 0.4 mM Mg2+, accelerate actin filament formation and increase the critical concentration of actin in 2-5 mM Mg2+, 75-100 mM KCl, and inhibit the addition of actin monomers to the barbed end of heavy meromyosin-decorated actin filaments as determined by electron microscopy. All of these effects occurred at nanomolar concentrations of capping protein and micromolar concentrations of actin, suggesting a high affinity interaction.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources