Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Jul 11;17(13):12519-12529.
doi: 10.1021/acsnano.3c02280. Epub 2023 Jun 20.

Time-Resolved Growth of 2D WSe2 Monolayer Crystals

Affiliations

Time-Resolved Growth of 2D WSe2 Monolayer Crystals

Nurul Azam et al. ACS Nano. .

Abstract

Understanding and controlling the growth evolution of atomically thin monolayer two-dimensional (2D) materials such as transition metal dichalcogenides (TMDCs) are vital for next-generation 2D electronics and optoelectronic devices. However, their growth kinetics are not fully observed or well understood due to the bottlenecks associated with the existing synthesis methods. This study demonstrates the time-resolved and ultrafast growth of 2D materials by a laser-based synthesis approach that enables the rapid initiation and termination of the vaporization process during crystal growth. The use of stoichiometric powder (e.g., WSe2) minimizes the complex chemistry during the vaporization and growth process, allowing rapid initiation/termination control over the generated flux. An extensive set of experiments is performed to understand the growth evolution, achieving subsecond growth as low as 10 ms along with a 100 μm/s growth rate on a noncatalytic substrate such as Si/SiO2. Overall, this study allows us to observe and understand the 2D crystal evolution and growth kinetics with time-resolved and subsecond time scales.

Keywords: 2D materials; TMDC; monolayer crystals; time-resolved growth; ultrafast crystal growth..

PubMed Disclaimer

LinkOut - more resources