Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Mar;13(2):350-360.
doi: 10.34172/apb.2023.021. Epub 2022 Jan 10.

Restoring the Angiogenic Capacity of the Human Diabetic Adipose-derived mesenchymal stem cells Primed with Deferoxamine as a Hypoxia Mimetic Agent: Role of HIF-1α

Affiliations

Restoring the Angiogenic Capacity of the Human Diabetic Adipose-derived mesenchymal stem cells Primed with Deferoxamine as a Hypoxia Mimetic Agent: Role of HIF-1α

Raziye Tajali et al. Adv Pharm Bull. 2023 Mar.

Abstract

Purpose: Insufficient angiogenesis is associated with serious diabetic complications. Recently, adipose-derived mesenchymal stem cells (ADScs) are known to be a promising tool causing therapeutic neovascularization. However, the overall therapeutic efficacy of these cells is impaired by diabetes. This study aims to investigate whether in vitro pharmacological priming with deferoxamine, a hypoxia mimetic agent, could restore the angiogenic potential of diabetic human ADSCs. Methods: Diabetic human ADSCs were treated with deferoxamine and compared to normal and nontreated diabetic ADSCs for the expression of hypoxia inducible factor 1-alpha (HIF-1α), vascular endothelial growth factor (VEGF), fibroblast growth factor-2 (FGF-2) and stromal cell-derived factor-1α (SDF-1α), at mRNA and protein levels, using qRT-PCR, western blotting and ELISA assay. Activities of matrix metalloproteinases (MMPs)-2 and -9 were measured using a gelatin zymography assay. Angiogenic potentials of conditioned media derived from normal, Deferoxamine treated, and non-treated ADSCs were determined by in vitro scratch assay and also three-dimensional tube formation assay. Results: It is demonstrated that deferoxamine (150 and 300 μM) stabilized HIF-1α in primed diabetic ADSCs. At the concentrations used, deferoxamine did not show any cytotoxic effects. In deferoxamine treated ADSCs, expression of VEGF, SDF-1α, FGF-2 and the activity of MMP-2 and MMP-9 were significantly increased compared to nontreated ADSCs. Moreover, deferoxamine increased the paracrine effects of diabetic ADSCs in promoting endothelial cell migration and tube formation. Conclusion: Deferoxamine might be an effective drug for pharmacological priming of diabetic ADSCs to enhance the expression of proangiogenic factors noted via HIF-1α accumulation. In addition, impaired angiogenic potential of conditioned medium derived from diabetic ADSCs was restored by deferoxamine.

Keywords: Adipose-derived mesenchymal stem cells; Angiogenesis; Deferoxamine; Type 2 diabetes.

PubMed Disclaimer

Conflict of interest statement

Hereby, it is declared that we do not have any conflict of interests on the publication of the paper.

Figures

Figure 1
Figure 1
Figure 2
Figure 2
Figure 3
Figure 3
Figure 4
Figure 4
Figure 5
Figure 5
Figure 6
Figure 6

References

    1. Aiello LP, Wong JS. Role of vascular endothelial growth factor in diabetic vascular complications. Kidney Int Suppl. 2000;77:S113–9. doi: 10.1046/j.1523-1755.2000.07718.x. - DOI - PubMed
    1. Liu H, Yu S, Zhang H, Xu J. Angiogenesis impairment in diabetes: role of methylglyoxal-induced receptor for advanced glycation endproducts, autophagy and vascular endothelial growth factor receptor 2. PLoS One. 2012;7(10):e46720. doi: 10.1371/journal.pone.0046720. - DOI - PMC - PubMed
    1. Karina Karina, Rosliana I, Sobariah S, Rosadi I, Afini I, Widyastuti T, et al. Diabetes mellitus type 2 reduces the viability, proliferation, and angiogenic marker of adipose-derived stem cells cultured in low-glucose anti-oxidant-serum supplemented medium. Biomed Res Ther. 2019;6(3):3073–82. doi: 10.15419/bmrat.v6i3.530. - DOI
    1. Shin L, Peterson DA. Impaired therapeutic capacity of autologous stem cells in a model of type 2 diabetes. Stem Cells Transl Med. 2012;1(2):125–35. doi: 10.5966/sctm.2012-0031. - DOI - PMC - PubMed
    1. HoWangYin KY, Loinard C, Bakker W, Guérin CL, Vilar J, d’Audigier C, et al. HIF-prolyl hydroxylase 2 inhibition enhances the efficiency of mesenchymal stem cell-based therapies for the treatment of critical limb ischemia. Stem Cells. 2014;32(1):231–43. doi: 10.1002/stem.1540. - DOI - PubMed

LinkOut - more resources