Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Oct 1:237:115468.
doi: 10.1016/j.bios.2023.115468. Epub 2023 Jun 10.

Soft microfiber-based hollow microneedle array for stretchable microfluidic biosensing patch with negative pressure-driven sampling

Affiliations

Soft microfiber-based hollow microneedle array for stretchable microfluidic biosensing patch with negative pressure-driven sampling

Mottour Vinayagam Chinnamani et al. Biosens Bioelectron. .

Abstract

Wearable point-of-care testing devices are essential for personalized and decentralized healthcare. They can collect biofluid samples from the human body and use an analyzer to detect biomolecules. However, creating an integrated system is challenging due to the difficulty of achieving conformality to the human body, regulating the collection and transport of biofluids, developing a biosensor patch capable of precise biomolecule detection, and establishing a simple operation protocol that requires minimal wearer attention. In this study, we propose using a hollow microneedle (HMN) based on soft hollow microfibers and a microneedle-integrated microfluidic biosensor patch (MIMBP) capable of integrated blood sampling and electrochemical biosensing of biomolecules. The soft MIMBP includes a stretchable microfluidic device, a flexible electrochemical biosensor, and a HMN array made from flexible hollow microfibers. The HMNs are fabricated by electroplating flexible and mechanically durable hollow microfibers made from a nanocomposite matrix of polyimide, a poly (vinylidene fluoride-co-trifluoroethylene) copolymer, and single-walled carbon nanotubes. The MIMBP uses the negative pressure generated by a single button push to collect blood and deliver it to a flexible electrochemical biosensor modified with a gold nanostructure and Pt nanoparticles. We have demonstrated that glucose can be accurately measured up to the molar range in whole human blood collected through the microneedle. The MIMBP platform with HMNs has great potential as a foundation for the future development of simple, wearable, self-testing systems for minimally invasive biomolecule detection. This platform capable of sequential blood collection and high sensitivity glucose detection, which are ideal for personalized and decentralized healthcare.

Keywords: Biosensor patch; Blood glucose testing; Hollow microfibers; Hollow microneedle; Microfluidics.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.