Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1986 Apr 5;188(3):313-24.
doi: 10.1016/0022-2836(86)90157-9.

Complete nucleotide sequence of the fast skeletal troponin T gene. Alternatively spliced exons exhibit unusual interspecies divergence

Comparative Study

Complete nucleotide sequence of the fast skeletal troponin T gene. Alternatively spliced exons exhibit unusual interspecies divergence

R E Breitbart et al. J Mol Biol. .

Abstract

The continuous nucleotide sequence of the rat fast skeletal muscle troponin T gene is reported, complementing the previous determinations of its structural organization and its capacity to encode multiple isoforms via alternative RNA splicing. Canonical promoter elements, as well as consensus sequences that may be involved in the 3' processing of the primary transcript, are present. All exons are flanked by conventional donor and acceptor splice sites, which can hybridize to U1 RNA. Extensive computer-assisted analyses of the genomic sequence do not reveal cis elements that unambiguously distinguish alternative from constitutive exons. Local RNA secondary structures can be predicted, however, that sequester exons or their splice sites in stem-and-loop formations, and which may also pair with small nuclear RNAs. These interactions might, in theory, contribute to differential exon usage. The structural features of exon organization that characterize this rat skeletal gene are closely conserved in the chicken cardiac troponin T gene, but the former exhibits a more diversified capacity for differential splicing. Implications for the mechanisms of alternative RNA splicing are considered. Comparisons of troponin T amino acid sequences among several species reveal striking dissimilarities, in contrast to the otherwise highly conserved contractile proteins. These divergences involve entire peptide subsegments and are concentrated in the same domains as are encoded by alternatively spliced exons, suggesting that exon shuffling may have contributed to the evolution of troponin T.

PubMed Disclaimer

Publication types

LinkOut - more resources