Ru-P pair sites boost charge transport in hematite photoanodes for exceeding 1% efficient solar water splitting
- PMID: 37364112
- PMCID: PMC10319015
- DOI: 10.1073/pnas.2300493120
Ru-P pair sites boost charge transport in hematite photoanodes for exceeding 1% efficient solar water splitting
Abstract
Fast transport of charge carriers in semiconductor photoelectrodes are a major determinant of the solar-to-hydrogen efficiency for photoelectrochemical (PEC) water slitting. While doping metal ions as single atoms/clusters in photoelectrodes has been popularly used to regulate their charge transport, PEC performances are often low due to the limited charge mobility and severe charge recombination. Here, we disperse Ru and P diatomic sites onto hematite (DASs Ru-P:Fe2O3) to construct an efficient photoelectrode inspired by the concept of correlated single-atom engineering. The resultant photoanode shows superior photocurrent densities of 4.55 and 6.5 mA cm-2 at 1.23 and 1.50 VRHE, a low-onset potential of 0.58 VRHE, and a high applied bias photon-to-current conversion efficiency of 1.00% under one sun illumination, which are much better than the pristine Fe2O3. A detailed dynamic analysis reveals that a remarkable synergetic ineraction of the reduced recombination by a low Ru doping concentration with substitution of Fe site as well as the construction of Ru-P bonds in the material increases the carrier separation and fast charge transportation dynamics. A systematic simulation study further proves the superiority of the Ru-P bonds compared to the Ru-O bonds, which allows more long-lived carriers to participate in the water oxidation reaction. This work offers an effective strategy for enhancing charge carrier transportation dynamics by constructing pair sites into semiconductors, which may be extended to other photoelectrodes for solar water splitting.
Keywords: charge carrier transfer; electron-hole recombination; hematite photoelectrodes; metal and nonmetal pair sites; photoelectrochemical water oxidation.
Conflict of interest statement
The authors declare no competing interest.
Figures






References
-
- Ohashi K., Mccann J., Bockris J. O, Stable photoelectrochemical cells for the splitting of water. Nature 266, 610–611 (1977).
-
- Peerakiatkhajohn P., et al. , Stable hematite nanosheet photoanodes for enhanced photoelectrochemical water splitting. Adv. Mater. 28, 6405–6410 (2016). - PubMed
-
- Zhao Y., et al. , α-Fe2O3 as a versatile and efficient oxygen atom transfer catalyst in combination with H2O as the oxygen source. Nat. Catal. 4, 684–691 (2021).
-
- Huang Z., et al. , In situ probe of photocarrier dynamics in water-splitting hematite (α-Fe2O3) electrodes. Energy Environ. Sci. 5, 8923–8926 (2012).
-
- Zhong M., et al. , Highly active GaN-stabilized Ta3N5 thin-film photoanode for solar water oxidation. Angew. Chem. Int. Ed. 56, 4739–4743 (2017). - PubMed
LinkOut - more resources
Full Text Sources