Microtubular cellulose-derived kapok fibre as a solid electron donor for boosting photocatalytic H2O2 production over C-doped g-C3N4 hybrid complexation
- PMID: 37364961
- DOI: 10.1016/j.carbpol.2023.121096
Microtubular cellulose-derived kapok fibre as a solid electron donor for boosting photocatalytic H2O2 production over C-doped g-C3N4 hybrid complexation
Abstract
Cellulose continues to play an important and emerging role in photocatalysis, and its favourable properties, such as electron-rich hydroxyl groups, could enhance the performance of photocatalytic reactions. For the first time, this study exploited the kapok fibre with microtubular structure (t-KF) as a solid electron donor to enhance the photocatalytic activity of C-doped g-C3N4 (CCN) via ligand-to-metal-charge-transfer (LMCT) to improve hydrogen peroxide (H2O2) production performance. As confirmed by various characterisation techniques, the hybrid complex consisting of CCN grafted on t-KF was successfully developed in the presence of succinic acid (SA) as a cross-linker via a simple hydrothermal approach. The complexation formation between CCN and t-KF results in the CCN-SA/t-KF sample displaying a higher photocatalytic activity than pristine g-C3N4 to produce H2O2 under visible light irradiation. The enhanced physicochemical and optoelectronic properties of CCN-SA/t-KF imply that the LMCT mechanism is crucial in improving photocatalytic activity. This study promotes utilising the unique t-KF material's properties to develop a low-cost and high-performance cellulose-based LMCT photocatalyst.
Keywords: Cellulose; Crosslinking; G-C(3)N(4); Hydrogen peroxide production; Ligand-to-metal-charge-transfer.
Copyright © 2023 Elsevier Ltd. All rights reserved.
Conflict of interest statement
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous
