Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2023 Jun 29:305:636-639.
doi: 10.3233/SHTI230578.

Using AI for Detection, Prediction and Classification of Retinal Detachment

Affiliations
Review

Using AI for Detection, Prediction and Classification of Retinal Detachment

Hesham Zaky et al. Stud Health Technol Inform. .

Abstract

The current state of machine learning (ML) and deep learning (DL) algorithms used to detect, classify and predict the onset of retinal detachment (RD) were examined in this scoping review. This severe eye condition can cause vision loss if left untreated. By analyzing the medical imaging modalities such as fundus photography, AI could help to detect peripheral detachment at an earlier stage. We have searched five databases: PubMed, Google Scholar, ScienceDirect, Scopus, and IEEE. Two reviewers independently carried out the selection of the studies and their data extractions. 32 studies fulfilled our eligibility criteria from the 666 references collected. In particular, based on the performance metrics employed in these studies, this scoping review provides a general overview of emerging trends and practices concerning using ML and DL algorithms for detecting, classifying, and predicting RD.

Keywords: Retina; Retinal Detachment; convolutional neural networks; deep learning; machine learning.

PubMed Disclaimer

LinkOut - more resources