Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Jul 21;18(7):1480-1486.
doi: 10.1021/acschembio.3c00268. Epub 2023 Jun 30.

Folding-Assisted Peptide Disulfide Formation and Dimerization

Affiliations

Folding-Assisted Peptide Disulfide Formation and Dimerization

Clara G Victorio et al. ACS Chem Biol. .

Abstract

Disulfide bonds form covalent bonds between distal regions of peptides and proteins to dramatically impact their folding, stability, and oligomerization. Given the prevalence of disulfide bonds in many natural products, considerable effort has been invested in site-selective disulfide bond formation approaches to control the folding of chemically synthesized peptides and proteins. Here, we show that the careful choice of thiol oxidation conditions can lead to monomeric or dimeric species from fully deprotected linear bisthiol peptides. Starting from a p53-derived peptide, we found that oxidation under aqueous (nondenaturing) conditions produces antiparallel dimers with enhanced α-helical character, while oxidation under denaturing conditions promotes formation of a nonhelical intramolecular disulfide species. Examination across peptide variants suggests that intramolecular disulfide formation is robust across diverse peptide sequences, while dimerization is sensitive to both the α-helical folding of the linear peptide and aromatic residues at the dimerization interface. All disulfide species are more resistant to protease degradation than the linear peptide but are easily reduced to restore the initial bisthiol peptide. Both disulfide formation approaches are compatible with α-helix-stabilizing cross-linkers. These results provide an approach for using disulfide bonds to control peptide folding and oligomerization to better understand how folding influences interactions with diverse molecular targets.

PubMed Disclaimer

Publication types

LinkOut - more resources