Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
[Preprint]. 2024 Dec 9:arXiv:2306.00838v3.

The Brain Tumor Segmentation - Metastases (BraTS-METS) Challenge 2023: Brain Metastasis Segmentation on Pre-treatment MRI

Ahmed W Moawad  1 Anastasia Janas  2 Ujjwal Baid  3 Divya Ramakrishnan  2 Rachit Saluja  4   5 Nader Ashraf  6   7 Nazanin Maleki  2   6 Leon Jekel  8 Nikolay Yordanov  9 Pascal Fehringer  10 Athanasios Gkampenis  11 Raisa Amiruddin  6 Amirreza Manteghinejad  6 Maruf Adewole  12 Jake Albrecht  13 Udunna Anazodo  12   14 Sanjay Aneja  15 Syed Muhammad Anwar  16 Timothy Bergquist  17 Veronica Chiang  18 Verena Chung  13 Gian Marco Conte  17 Farouk Dako  19 James Eddy  13 Ivan Ezhov  20 Nastaran Khalili  21 Keyvan Farahani  22 Juan Eugenio Iglesias  23 Zhifan Jiang  24 Elaine Johanson  25 Anahita Fathi Kazerooni  21   26   27 Florian Kofler  28 Kiril Krantchev  2 Dominic LaBella  29 Koen Van Leemput  30 Hongwei Bran Li  23 Marius George Linguraru  16   31 Xinyang Liu  24 Zeke Meier  32 Bjoern H Menze  33 Harrison Moy  2 Klara Osenberg  2 Marie Piraud  34 Zachary Reitman  29 Russell Takeshi Shinohara  35 Chunhao Wang  29 Benedikt Wiestler  28 Walter Wiggins  36 Umber Shafique  37 Klara Willms  2 Arman Avesta  2   38 Khaled Bousabarah  39 Satrajit Chakrabarty  40   41 Nicolo Gennaro  42 Wolfgang Holler  39 Manpreet Kaur  43 Pamela LaMontagne  44 MingDe Lin  45 Jan Lost  46 Daniel S Marcus  44 Ryan Maresca  15 Sarah Merkaj  47 Gabriel Cassinelli Pedersen  48 Marc von Reppert  49 Aristeidis Sotiras  44   50 Oleg Teytelboym  1 Niklas Tillmans  51 Malte Westerhoff  39 Ayda Youssef  52 Devon Godfrey  29 Scott Floyd  29 Andreas Rauschecker  53 Javier Villanueva-Meyer  53 Irada Pflüger  54 Jaeyoung Cho  54 Martin Bendszus  54 Gianluca Brugnara  54 Justin Cramer  55 Gloria J Guzman Perez-Carillo  56 Derek R Johnson  17 Anthony Kam  57 Benjamin Yin Ming Kwan  58 Lillian Lai  59 Neil U Lall  60 Fatima Memon  61   62   63 Mark Krycia  61 Satya Narayana Patro  64 Bojan Petrovic  65 Tiffany Y So  66 Gerard Thompson  67   68 Lei Wu  69 E Brooke Schrickel  70 Anu Bansal  71 Frederik Barkhof  72   73 Cristina Besada  74 Sammy Chu  69 Jason Druzgal  75 Alexandru Dusoi  76 Luciano Farage  77 Fabricio Feltrin  78 Amy Fong  79 Steve H Fung  80 R Ian Gray  81 Ichiro Ikuta  55 Michael Iv  82 Alida A Postma  83   84 Amit Mahajan  2 David Joyner  75 Chase Krumpelman  42 Laurent Letourneau-Guillon  85 Christie M Lincoln  86 Mate E Maros  87 Elka Miller  88 Fanny Esther A Morón  89 Esther A Nimchinsky  90 Ozkan Ozsarlak  91 Uresh Patel  92 Saurabh Rohatgi  38 Atin Saha  93   94 Anousheh Sayah  95 Eric D Schwartz  96   97 Robert Shih  98 Mark S Shiroishi  99 Juan E Small  100 Manoj Tanwar  101 Jewels Valerie  102 Brent D Weinberg  103 Matthew L White  104 Robert Young  93 Vahe M Zohrabian  105 Aynur Azizova  106 Melanie Maria Theresa Brüßeler  43 Mohanad Ghonim  107 Mohamed Ghonim  107 Abdullah Okar  108 Luca Pasquini  93 Yasaman Sharifi  109 Gagandeep Singh  110 Nico Sollmann  111   112   113 Theodora Soumala  11 Mahsa Taherzadeh  114 Philipp Vollmuth  54   115 Martha Foltyn-Dumitru  54 Ajay Malhotra  2 Aly H Abayazeed  82 Francesco Dellepiane  116 Philipp Lohmann  117   118 Víctor M Pérez-García  119 Hesham Elhalawani  120 Maria Correia de Verdier  121   122 Sanaria Al-Rubaiey  123 Rui Duarte Armindo  124 Kholod Ashraf  52 Moamen M Asla  125 Mohamed Badawy  126 Jeroen Bisschop  127 Nima Broomand Lomer  128 Jan Bukatz  123 Jim Chen  129 Petra Cimflova  130 Felix Corr  131 Alexis Crawley  132 Lisa Deptula  133 Tasneem Elakhdar  52 Islam H Shawali  52 Shahriar Faghani  17 Alexandra Frick  134 Vaibhav Gulati  135 Muhammad Ammar Haider  136 Fátima Hierro  137 Rasmus Holmboe Dahl  138 Sarah Maria Jacobs  139 Kuang-Chun Jim Hsieh  89 Sedat G Kandemirli  59 Katharina Kersting  123 Laura Kida  123 Sofia Kollia  140 Ioannis Koukoulithras  141 Xiao Li  103 Ahmed Abouelatta  52 Aya Mansour  52 Ruxandra-Catrinel Maria-Zamfirescu  123 Marcela Marsiglia  142 Yohana Sarahi Mateo-Camacho  143 Mark McArthur  144 Olivia McDonnell  145 Maire McHugh  146 Mana Moassefi  147 Samah Mostafa Morsi  86 Alexander Munteanu  148 Khanak K Nandolia  149 Syed Raza Naqvi  150 Yalda Nikanpour  151 Mostafa Alnoury  152 Abdullah Mohamed Aly Nouh  153 Francesca Pappafava  154 Markand D Patel  155 Samantha Petrucci  53 Eric Rawie  156 Scott Raymond  157 Borna Roohani  108 Sadeq Sabouhi  158 Laura M Sanchez-Garcia  159 Zoe Shaked  123 Pokhraj P Suthar  160 Talissa Altes  161 Edvin Isufi  161 Yaseen Dhemesh  162 Jaime Gass  161 Jonathan Thacker  161 Abdul Rahman Tarabishy  163 Benjamin Turner  164 Sebastiano Vacca  165 George K Vilanilam  164 Daniel Warren  162 David Weiss  166 Fikadu Worede  6 Sara Yousry  52 Wondwossen Lerebo  6 Alejandro Aristizabal  167   168 Alexandros Karargyris  167 Hasan Kassem  167 Sarthak Pati  3   167   169 Micah Sheller  167   170 Katherine E Evan Link  171 Evan Calabrese  172 Nourel Hoda Tahon  161 Ayman Nada  161 Yuri S Velichko  42 Spyridon Bakas  3   37   173 Jeffrey D Rudie  122   174 Mariam Aboian  6
Affiliations

The Brain Tumor Segmentation - Metastases (BraTS-METS) Challenge 2023: Brain Metastasis Segmentation on Pre-treatment MRI

Ahmed W Moawad et al. ArXiv. .

Abstract

The translation of AI-generated brain metastases (BM) segmentation into clinical practice relies heavily on diverse, high-quality annotated medical imaging datasets. The BraTS-METS 2023 challenge has gained momentum for testing and benchmarking algorithms using rigorously annotated internationally compiled real-world datasets. This study presents the results of the segmentation challenge and characterizes the challenging cases that impacted the performance of the winning algorithms. Untreated brain metastases on standard anatomic MRI sequences (T1, T2, FLAIR, T1PG) from eight contributed international datasets were annotated in stepwise method: published UNET algorithms, student, neuroradiologist, final approver neuroradiologist. Segmentations were ranked based on lesion-wise Dice and Hausdorff distance (HD95) scores. False positives (FP) and false negatives (FN) were rigorously penalized, receiving a score of 0 for Dice and a fixed penalty of 374 for HD95. The mean scores for the teams were calculated. Eight datasets comprising 1303 studies were annotated, with 402 studies (3076 lesions) released on Synapse as publicly available datasets to challenge competitors. Additionally, 31 studies (139 lesions) were held out for validation, and 59 studies (218 lesions) were used for testing. Segmentation accuracy was measured as rank across subjects, with the winning team achieving a LesionWise mean score of 7.9. The Dice score for the winning team was 0.65 ± 0.25. Common errors among the leading teams included false negatives for small lesions and misregistration of masks in space. The Dice scores and lesion detection rates of all algorithms diminished with decreasing tumor size, particularly for tumors smaller than 100 mm3. In conclusion, algorithms for BM segmentation require further refinement to balance high sensitivity in lesion detection with the minimization of false positives and negatives. The BraTS-METS 2023 challenge successfully curated well-annotated, diverse datasets and identified common errors, facilitating the translation of BM segmentation across varied clinical environments and providing personalized volumetric reports to patients undergoing BM treatment.

Keywords: Artificial Intelligence; BraTS; BraTS-METS; Brain metastasis; Brain tumor segmentation; Machine learning; Medical image analysis challenge.

PubMed Disclaimer

Conflict of interest statement

Conflicts of Interest No conflicts of interest to disclose.

Figures

Figure 1:
Figure 1:
Flow chart outlining the BraTS-METS 2023 vision, beginning with the pre-treatment BMs segmentation during the 2023 ASNR/MICCAI BraTS challenge. In this phase, segmentations were conducted on a select dataset subset to refine the dataset for algorithm development by participants. The dataset is set to expand in subsequent challenges through ongoing annotation of contributed brain MRIs. Future challenges will incorporate datasets with annotated post-treatment BMs, segmentations including the hemorrhagic component of tumors, and non-skull-stripped images to enhance the evaluation of dural-based and osseous metastases. These datasets, coupled with clinical data and patient demographics, will contribute to an inter-institutional BMs consortium, fostering collaborative research and the clinical application of algorithms through partnerships between academia and industry.
Figure 2:
Figure 2:
Image panels illustrating the annotated tumor sub-regions across various mpMRI scans with segmentations of ET (yellow), SNFH (green), and NETC (red) done on ITK-SNAP.
Figure 3:
Figure 3:
BraTS-METS 2023 annotation pipeline.
Figure 4:
Figure 4:
Map of institutions that expressed interest in contributing data to the BraTS-METS challenge.
Figure 5:
Figure 5:
BraTS-METS 2023 boxplots of LesionWise ranking across patients for all participating teams on the BraTS 2023 test set (lower is better).
Figure 6:
Figure 6:
BraTS-METS 2023 boxplots of enhancing tumor Dice scores (A) and 95% Hausdorff distance (HD95) (B) for all participating teams on the BraTS 2023 test set.
Figure 7:
Figure 7:
BraTS-METS 2023 boxplots of tumor core Dice scores (A) and 95% Hausdorff distance (HD95) (B) for all participating teams on the BraTS 2023 test set.
Figure 8:
Figure 8:
BraTS-METS 2023 boxplots of whole tumor Dice scores (A) and 95% Hausdorff distance (HD95) (B) for all participating teams on the BraTS 2023 test set.
Figure 9:
Figure 9:
Performance metrics across tumor entities—whole tumor (WT), tumor core (TC), and enhancing tumor (ET).
Figure 10:
Figure 10:
BraTS-METS 2023 plot of cumulative average of (A) Dice scores, (B) 95% Hausdorff distance (HD95), and (C) lesion detection rate as a function of increasing lesion volume.

References

    1. Bousabarah Khaled, Ruge Maximilian, Brand Julia-Sarita, Hoevels Mauritius, Rueß Daniel, Borggrefe Jan, Hokamp Nils Große, Visser-Vandewalle Veerle, Maintz David, Treuer Harald, et al. Deep convolutional neural networks for automated segmentation of brain metastases trained on clinical data. Radiation Oncology, 15:1–9, 2020. - PMC - PubMed
    1. Buchner Josef A, Peeken Jan C, Etzel Lucas, Ezhov Ivan, Mayinger Michael, Christ Sebastian M, Brunner Thomas B, Wittig Andrea, Menze Bjoern H, Zimmer Claus, et al. Identifying core mri sequences for reliable automatic brain metastasis segmentation. Radiotherapy and Oncology, 188:109901, 2023. - PubMed
    1. Petersen Gabriel Cassinelli, Bousabarah Khaled, Verma Tej, von Reppert Marc, Jekel Leon, Gordem Ayyuce, Jang Benjamin, Merkaj Sara, Fadel Sandra Abi, Owens Randy, et al. Real-time pacs-integrated longitudinal brain metastasis tracking tool provides comprehensive assessment of treatment response to radiosurgery. Neuro-Oncology Advances, 4(1):vdac116, 2022. - PMC - PubMed
    1. Charron Odelin, Lallement Alex, Jarnet Delphine, Noblet Vincent, Clavier Jean-Baptiste, and Meyer Philippe. Automatic detection and segmentation of brain metastases on multimodal mr images with a deep convolutional neural network. Computers in biology and medicine, 95:43–54, 2018. - PubMed
    1. Chen Jieneng, Mei Jieru, Li Xianhang, Lu Yongyi, Yu Qihang, Wei Qingyue, Luo Xiangde, Xie Yutong, Adeli Ehsan, Wang Yan, et al. 3d transunet: Advancing medical image segmentation through vision transformers. arXiv preprint arXiv:2310.07781, 2023a.

Publication types

LinkOut - more resources