This is a preprint.
Zero-shot Interpretable Phenotyping of Postpartum Hemorrhage Using Large Language Models
- PMID: 37398230
- PMCID: PMC10312824
- DOI: 10.1101/2023.05.31.23290753
Zero-shot Interpretable Phenotyping of Postpartum Hemorrhage Using Large Language Models
Update in
-
Zero-shot interpretable phenotyping of postpartum hemorrhage using large language models.NPJ Digit Med. 2023 Nov 30;6(1):212. doi: 10.1038/s41746-023-00957-x. NPJ Digit Med. 2023. PMID: 38036723 Free PMC article.
Abstract
Many areas of medicine would benefit from deeper, more accurate phenotyping, but there are limited approaches for phenotyping using clinical notes without substantial annotated data. Large language models (LLMs) have demonstrated immense potential to adapt to novel tasks with no additional training by specifying task-specific i nstructions. We investigated the per-formance of a publicly available LLM, Flan-T5, in phenotyping patients with postpartum hemorrhage (PPH) using discharge notes from electronic health records ( n =271,081). The language model achieved strong performance in extracting 24 granular concepts associated with PPH. Identifying these granular concepts accurately allowed the development of inter-pretable, complex phenotypes and subtypes. The Flan-T5 model achieved high fidelity in phenotyping PPH (positive predictive value of 0.95), identifying 47% more patients with this complication compared to the current standard of using claims codes. This LLM pipeline can be used reliably for subtyping PPH and outperformed a claims-based approach on the three most common PPH subtypes associated with uterine atony, abnormal placentation, and obstetric trauma. The advantage of this approach to subtyping is its interpretability, as each concept contributing to the subtype determination can be evaluated. Moreover, as definitions may change over time due to new guidelines, using granular concepts to create complex phenotypes enables prompt and efficient updating of the algorithm. Using this lan-guage modelling approach enables rapid phenotyping without the need for any manually annotated training data across multiple clinical use cases.
Similar articles
-
Zero-shot interpretable phenotyping of postpartum hemorrhage using large language models.NPJ Digit Med. 2023 Nov 30;6(1):212. doi: 10.1038/s41746-023-00957-x. NPJ Digit Med. 2023. PMID: 38036723 Free PMC article.
-
Large language models to identify social determinants of health in electronic health records.NPJ Digit Med. 2024 Jan 11;7(1):6. doi: 10.1038/s41746-023-00970-0. NPJ Digit Med. 2024. PMID: 38200151 Free PMC article.
-
Ensembles of natural language processing systems for portable phenotyping solutions.J Biomed Inform. 2019 Dec;100:103318. doi: 10.1016/j.jbi.2019.103318. Epub 2019 Oct 23. J Biomed Inform. 2019. PMID: 31655273 Free PMC article.
-
Active management of the third stage of labour: prevention and treatment of postpartum hemorrhage.J Obstet Gynaecol Can. 2009 Oct;31(10):980-993. doi: 10.1016/S1701-2163(16)34329-8. J Obstet Gynaecol Can. 2009. PMID: 19941729 Review.
-
Review of Current Insights and Therapeutic Approaches for the Treatment of Refractory Postpartum Hemorrhage.Int J Womens Health. 2023 Jun 1;15:905-926. doi: 10.2147/IJWH.S366675. eCollection 2023. Int J Womens Health. 2023. PMID: 37283995 Free PMC article. Review.
Publication types
LinkOut - more resources
Full Text Sources