Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Jul 4;14(1):3665.
doi: 10.1038/s41467-023-38900-z.

Global assessment of marine plastic exposure risk for oceanic birds

Bethany L Clark  1 Ana P B Carneiro  2 Elizabeth J Pearmain  3   4   5 Marie-Morgane Rouyer  6 Thomas A Clay  7   8   9 Win Cowger  10 Richard A Phillips  11 Andrea Manica  12 Carolina Hazin  13   14 Marcus Eriksen  15 Jacob González-Solís  16   17 Josh Adams  18 Yuri V Albores-Barajas  19   20 Joanna Alfaro-Shigueto  21   22   23 Maria Saldanha Alho  24 Deusa Teixeira Araujo  25 José Manuel Arcos  26 John P Y Arnould  27 Nadito J P Barbosa  25 Christophe Barbraud  28 Annalea M Beard  29   30 Jessie Beck  31 Elizabeth A Bell  32 Della G Bennet  33 Maud Berlincourt  27 Manuel Biscoito  34 Oskar K Bjørnstad  35 Mark Bolton  36 Katherine A Booth Jones  37 John J Borg  38 Karen Bourgeois  39   40 Vincent Bretagnolle  28 Joël Bried  41 James V Briskie  33 M de L Brooke  12 Katherine C Brownlie  27 Leandro Bugoni  42 Licia Calabrese  43   44   45 Letizia Campioni  24 Mark J Carey  46 Ryan D Carle  31 Nicholas Carlile  47 Ana R Carreiro  48   49 Paulo Catry  24 Teresa Catry  50 Jacopo G Cecere  51 Filipe R Ceia  48 Yves Cherel  28 Chang-Yong Choi  52 Marco Cianchetti-Benedetti  53 Rohan H Clarke  54 Jaimie B Cleeland  55   56 Valentina Colodro  57 Bradley C Congdon  58 Jóhannis Danielsen  59 Federico De Pascalis  51   60 Zoe Deakin  30   61 Nina Dehnhard  62   63 Giacomo Dell'Omo  53 Karine Delord  28 Sébastien Descamps  64 Ben J Dilley  65 Herculano A Dinis  25 Jerome Dubos  66 Brendon J Dunphy  67 Louise M Emmerson  56 Ana Isabel Fagundes  68 Annette L Fayet  62   69 Jonathan J Felis  18   70 Johannes H Fischer  43   71 Amanda N D Freeman  72 Aymeric Fromant  27   28 Giorgia Gaibani  73 David García  74 Carina Gjerdrum  75 Ivandra Soeli Gonçalves Correia Gomes  25 Manuela G Forero  76 José P Granadeiro  77 W James Grecian  78 David Grémillet  6   65 Tim Guilford  69 Gunnar Thor Hallgrimsson  79 Luke R Halpin  80   81 Erpur Snær Hansen  82 April Hedd  83 Morten Helberg  84   85 Halfdan H Helgason  86 Leeann M Henry  29 Hannah F R Hereward  30   87 Marcos Hernandez-Montero  88 Mark A Hindell  55 Peter J Hodum  89 Simona Imperio  51   90 Audrey Jaeger  66 Mark Jessopp  91   92 Patrick G R Jodice  93 Carl G Jones  94   95 Christopher W Jones  65 Jón Einar Jónsson  96 Adam Kane  97 Sven Kapelj  98 Yuna Kim  99 Holly Kirk  100 Yann Kolbeinsson  101 Philipp L Kraemer  102 Lucas Krüger  103   104 Paulo Lago  26   105 Todd J Landers  40   106 Jennifer L Lavers  107 Matthieu Le Corre  66 Andreia Leal  25 Maite Louzao  108 Jeremy Madeiros  109 Maria Magalhães  110 Mark L Mallory  111 Juan F Masello  102 Bruno Massa  112 Sakiko Matsumoto  113 Fiona McDuie  114 Laura McFarlane Tranquilla  115 Fernando Medrano  16   17 Benjamin J Metzger  105 Teresa Militão  16   17 William A Montevecchi  116 Rosalinda C Montone  117 Leia Navarro-Herrero  16   17 Verónica C Neves  41   118 David G Nicholls  119 Malcolm A C Nicoll  120 Ken Norris  121 Steffen Oppel  61 Daniel Oro  122 Ellie Owen  123   124 Oliver Padget  69 Vítor H Paiva  48 David Pala  125 Jorge M Pereira  48 Clara Péron  126 Maria V Petry  127 Admilton de Pina  25 Ariete T Moreira Pina  128 Patrick Pinet  129 Pierre A Pistorius  130 Ingrid L Pollet  111 Benjamin J Porter  30 Timothée A Poupart  27 Christopher D L Powell  131 Carolina B Proaño  132 Júlia Pujol-Casado  16   17 Petra Quillfeldt  102 John L Quinn  133 Andre F Raine  134 Helen Raine  134 Iván Ramírez  135 Jaime A Ramos  48 Raül Ramos  16   17 Andreas Ravache  136 Matt J Rayner  137 Timothy A Reid  138 Gregory J Robertson  139 Gerard J Rocamora  43   45 Dominic P Rollinson  65 Robert A Ronconi  75 Andreu Rotger  140 Diego Rubolini  141   142 Kevin Ruhomaun  143 Asunción Ruiz  144 James C Russell  40 Peter G Ryan  65 Sarah Saldanha  16   17 Ana Sanz-Aguilar  140   145 Mariona Sardà-Serra  16   17 Yvan G Satgé  146 Katsufumi Sato  147 Wiebke C Schäfer  102 Stefan Schoombie  65 Scott A Shaffer  148 Nirmal Shah  149 Akiko Shoji  150 Dave Shutler  111 Ingvar A Sigurðsson  151 Mónica C Silva  152 Alison E Small  29 Cecilia Soldatini  153 Hallvard Strøm  64 Christopher A Surman  154 Akinori Takahashi  155 Vikash R V Tatayah  94 Graeme A Taylor  156 Robert J Thomas  30 David R Thompson  157 Paul M Thompson  158 Thorkell L Thórarinsson  101 Diego Vicente-Sastre  16   17 Eric Vidal  159   160 Ewan D Wakefield  78 Susan M Waugh  13 Henri Weimerskirch  28 Heiko U Wittmer  161 Takashi Yamamoto  162 Ken Yoda  163 Carlos B Zavalaga  164 Francis J Zino  165 Maria P Dias  13   152   166
Affiliations

Global assessment of marine plastic exposure risk for oceanic birds

Bethany L Clark et al. Nat Commun. .

Abstract

Plastic pollution is distributed patchily around the world's oceans. Likewise, marine organisms that are vulnerable to plastic ingestion or entanglement have uneven distributions. Understanding where wildlife encounters plastic is crucial for targeting research and mitigation. Oceanic seabirds, particularly petrels, frequently ingest plastic, are highly threatened, and cover vast distances during foraging and migration. However, the spatial overlap between petrels and plastics is poorly understood. Here we combine marine plastic density estimates with individual movement data for 7137 birds of 77 petrel species to estimate relative exposure risk. We identify high exposure risk areas in the Mediterranean and Black seas, and the northeast Pacific, northwest Pacific, South Atlantic and southwest Indian oceans. Plastic exposure risk varies greatly among species and populations, and between breeding and non-breeding seasons. Exposure risk is disproportionately high for Threatened species. Outside the Mediterranean and Black seas, exposure risk is highest in the high seas and Exclusive Economic Zones (EEZs) of the USA, Japan, and the UK. Birds generally had higher plastic exposure risk outside the EEZ of the country where they breed. We identify conservation and research priorities, and highlight that international collaboration is key to addressing the impacts of marine plastic on wide-ranging species.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing interests.

Figures

Fig. 1
Fig. 1. Mapping petrels and plastics.
a Species richness based on presence within 95% utilisation distributions isopleth contours from tracking data for 77 petrel species. Red diamonds indicate the colonies from which tracking data were obtained. b Plastic density at the ocean surface, showing the square root of the number of plastic pieces (~0.333 mm–0.4 m) estimated per km2 in each 1 × 1° grid cell. For visualisation only, the values are capped at 10% due to extreme values. c Summed 95% utilisation distributions for all species, with species weighted equally if year-round tracks were available or by 0.5 if tracks were only available for the breeding season. If we had data from multiple populations for a species, densities were weighted by approximate population size. d Exposure risk to plastic was calculated by multiplying the density value in each cell for plastics (scaled to sum to 1) by the value for petrels (scaled to sum to 1). For visualisation only, the values are capped at 1% due to extreme values, and all other values are shown on a linear scale. Black ellipses relate to the areas identified from the 20 species with the highest exposure risk scores (Fig. 2a). n = number. White = no data. Robinson Projection. Land polygons from Natural Earth. Source data for colony locations are provided as a Source Data file.
Fig. 2
Fig. 2. Plastic exposure risk scores for 77 petrel species.
a Species are ranked by exposure risk from the top-left to the bottom-right. Colours represent the location that contributed most to the score for the five areas of highest exposure risk. Where there are multiple populations per species (grey diamonds), the mean of all populations (black circles) is weighted by the population size. The vertical dashed line indicates the theoretical exposure risk score if plastic was uniformly distributed across all cells (15.3). Values in parentheses are the number of populations, followed by 1 if the species was tracked in breeding and non-breeding seasons or by 0.5 if only tracked in one season. Two-letter codes indicate the IUCN Red List assessment threat category (Least Concern (LC; n = 36), Near Threatened (NT; 9), Vulnerable (VU; 16), Endangered (EN; 10), Critically Endangered (CR; 6)). b The percentage of tracked petrel species within each IUCN threat category and the percentage of total exposure risk attributed to species in each category. Source data are provided as a Source Data file.
Fig. 3
Fig. 3. Season-specific plastic exposure risk scores.
a Scores during breeding (grey circles) and non-breeding seasons (black circles) for the 20 populations with the greatest differences between seasons (grey lines). b Non-breeding season plastic exposure risk for Scopoli’s shearwaters (non-breeding score = 30.0, breeding season score = 496.24) and c yelkouan shearwaters (non-breeding = 937.7, breeding =517.5) for tracked from Malta, and for Cook’s petrels breeding either at d Te Hauturu-o-Toi/Little Barrier Island (non-breeding = 159.3, breeding = 5.5) or e Whenua Hou/Codfish Island (non-breeding = 0.8, breeding = 2.1). Black lines indicate the outline of the most used area in the non-breeding season (top 25% of the utilisation distribution). Land polygons from Natural Earth. Source data are provided as a Source Data file.
Fig. 4
Fig. 4. Plastic exposure risk for petrels in different jurisdictions.
a Map of plastic exposure risk for 77 petrel species in the Exclusive Economic Zones (EEZs) of each country (including overseas territories) and the high seas (Areas Beyond National Jurisdiction). In the Mediterranean, theoretical EEZs are used. For visualisation only, the score is capped at 1% due to extreme values in the Mediterranean and Black Seas. b The percentage of plastic exposure risk score attributed to the high seas and each EEZ/theoretical EEZ accounting for >1% of total exposure risk, labelled with the number of tracked species using each area (values are provided in Supplementary Table 1). c For the 29 petrel populations by country with the highest exposure risk scores (ranked from high to low), bars show the proportion of the exposure risk score in each jurisdiction that accounts for over 5% of the total exposure risk, with unlabelled bars containing all others. Bars are coloured according to b. Overlapping territorial claims are shown as claim 1/claim 2. MDG = Madagascar. Asterisks(*) indicate that the EEZ matches the breeding country. Land polygons from Natural Earth. Source data are provided as a Source Data file.

References

    1. Kühn S, van Franeker JA. Quantitative overview of marine debris ingested by marine megafauna. Mar. Pollut. Bull. 2020;151:110858. doi: 10.1016/j.marpolbul.2019.110858. - DOI - PubMed
    1. Dias MP, et al. Threats to seabirds: a global assessment. Biol. Conserv. 2019;237:525–537. doi: 10.1016/j.biocon.2019.06.033. - DOI
    1. Ryan PG, Moore CJ, van Franeker JA, Moloney CL. Monitoring the abundance of plastic debris in the marine environment. Philos. Trans. R. Soc. B Biol. Sci. 2009;364:1999–2012. doi: 10.1098/rstb.2008.0207. - DOI - PMC - PubMed
    1. Provencher JF, et al. Quantifying ingested debris in marine megafauna: a review and recommendations for standardization. Anal. Methods. 2017;9:1454–1469. doi: 10.1039/C6AY02419J. - DOI
    1. Senko JF, et al. Understanding individual and population-level effects of plastic pollution on marine megafauna. Endanger. Species Res. 2020;43:234–252. doi: 10.3354/esr01064. - DOI

Publication types