Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Dec;20(1):224-232.
doi: 10.1080/15412555.2023.2228903.

Development of a Diagnostic Nomogram to Predict CAP in Hospitalized Patients with AECOPD

Affiliations
Free article

Development of a Diagnostic Nomogram to Predict CAP in Hospitalized Patients with AECOPD

Nafeisa Dilixiati et al. COPD. 2023 Dec.
Free article

Abstract

The purpose of this study was to establish a nomogram for predicting community-acquired pneumonia (CAP) in hospitalized patients with acute exacerbations of chronic obstructive pulmonary disease (AECOPD). The retrospective cohort study included 1249 hospitalized patients with AECOPD between January 2012 and December 2019. The patients were divided into pneumonia-complicating AECOPD (pAECOPD) and non-pneumonic AECOPD (npAECOPD) groups. The least absolute shrinkage and selection operator (LASSO) regression and multivariate logistic regression were utilized to identify prognostic factors. A prognostic nomogram model was established, and the bootstrap method was used for internal validation. Discrimination and calibration of the nomogram model were evaluated by receiver operating characteristic (ROC) curve, calibration curve, and decision curve analysis (DCA). Logistic and LASSO regression analysis showed that C-reactive protein (CRP) >10 mg/L, albumin (Alb) <40 g/L, alanine transferase (ALT) >50 U/L, fever, bronchiectasis, asthma, previous hospitalization for pAECOPD in the past year (Pre-H for pAECOPD), and age-adjusted Charlson score (aCCI) ≥6 were independent predictors of pAECOPD. The area under the ROC curve (AUC) of the nomogram model was 0.712 (95% CI: 0.682-0.741). The corrected AUC of internal validation was 0.700. The model had well-fitted calibration curves and good clinical usability DCA curve. A nomogram model was developed to assist clinicians in predicting the risk of pAECOPD.China Clinical Trials Registry: ChiCTR2000039959.

Keywords: Chronic obstructive pulmonary disease; community-acquired pneumonia; exacerbations; logistic regression; predictive model.

PubMed Disclaimer

Similar articles

Cited by