Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Oct 1;101(10):539-547.
doi: 10.1139/cjpp-2022-0552. Epub 2023 Jul 5.

Long-term potentiation and its neurotrophin-dependent modulation in the superior cervical ganglion of the rat are influenced by KCNQ channel function

Affiliations

Long-term potentiation and its neurotrophin-dependent modulation in the superior cervical ganglion of the rat are influenced by KCNQ channel function

Erwin R Arias et al. Can J Physiol Pharmacol. .

Abstract

Ganglionic long-term potentiation (gLTP) in the rat superior cervical ganglion (SCG) is differentially modulated by neurotrophic factors (Nts): brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF). KCNQ/M channels, key regulators of neuronal excitability, and firing pattern are modulated by Nts; therefore, they might contribute to gLTP expression and to the Nts-dependent modulation of gLTP. In the SCG of rats, we characterized the presence of the KCNQ2 isoform and the effects of opposite KCNQ/M channel modulators on gLTP in control condition and under Nts modulation. Immunohistochemical and reverse transcriptase polymerase chain reaction analyses showed the expression of the KCNQ2 isoform. We found that 1 µmol/L XE991, a channel inhibitor, significantly reduced gLTP (∼50%), whereas 5 µmol/L flupirtine, a channel activator, significantly increased gLTP (1.3- to 1.7-fold). Both modulators counterbalanced the effects of the Nts on gLTP. Data suggest that KCNQ/M channels are likely involved in gLTP expression and in the modulation exerted by BDNF and NGF.

Keywords: neuronal excitability; neurotrophic factors; potassium channels; sympathetic ganglia; synaptic plasticity.

PubMed Disclaimer

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Substances