Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Oct;20(10):1378-1384.
doi: 10.1016/j.hrthm.2023.06.019. Epub 2023 Jul 3.

Artificial intelligence for detection of ventricular oversensing: Machine learning approaches for noise detection within nonsustained ventricular tachycardia episodes remotely transmitted by pacemakers and implantable cardioverter-defibrillators

Affiliations

Artificial intelligence for detection of ventricular oversensing: Machine learning approaches for noise detection within nonsustained ventricular tachycardia episodes remotely transmitted by pacemakers and implantable cardioverter-defibrillators

Marc Strik et al. Heart Rhythm. 2023 Oct.

Abstract

Background: Pacemakers (PMs) and implantable cardioverter-defibrillators (ICDs) increasingly automatically record and remotely transmit nonsustained ventricular tachycardia (NSVT) episodes, which may reveal ventricular oversensing.

Objectives: We aimed to develop and validate a machine learning algorithm that accurately classifies NSVT episodes transmitted by PMs and ICDs in order to lighten health care workload burden and improve patient safety.

Methods: PMs or ICDs (Boston Scientific, St Paul, MN) from 4 French hospitals with ≥1 transmitted NSVT episode were split into 3 subgroups: training set, validation set, and test set. Each NSVT episode was labeled as either physiological or nonphysiological. Four machine learning algorithms-2DTF-CNN, 2D-DenseNet, 2DTF-VGG, and 1D-AgResNet-were developed using training and validation data sets. Accuracies of the classifiers were compared with an analysis of the remote monitoring team of the Bordeaux University Hospital using F2 scores (favoring sensitivity over predictive positive value) using an independent test set.

Results: A total of 807 devices transmitted 10,471 NSVT recordings (82% ICD; 18% PM), of which 87 devices (10.8%) transmitted 544 NSVT recordings with nonphysiological signals. The classification by the remote monitoring team resulted in an F2 score of 0.932 (sensitivity 95%; specificity 99%) The 4 machine learning algorithms showed high and comparable F2 scores (2DTF-CNN: 0.914; 2D-DenseNet: 0.906; 2DTF-VGG: 0.863; 1D-AgResNet: 0.791), and only 1D-AgResNet had significantly different labeling from that of the remote monitoring team.

Conclusion: Machine learning algorithms were accurate in detecting nonphysiological signals within electrograms transmitted by PMs and ICDs. An artificial intelligence approach may render remote monitoring less resourceful and improve patient safety.

Keywords: Artificial intelligence; Implantable cardioverter-defibrillator; Lead noise; Machine learning; Pacemaker; Remote monitoring.

PubMed Disclaimer

Publication types

LinkOut - more resources