Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2023;30(8):640-652.
doi: 10.2174/0929866530666230705153229.

A Comprehensive Review on Inorganic Nanoparticles as Effective Modulators of Amyloidogenesis

Affiliations
Review

A Comprehensive Review on Inorganic Nanoparticles as Effective Modulators of Amyloidogenesis

Debashmita Chakraborty et al. Protein Pept Lett. 2023.

Abstract

Many degenerative disorders have started to develop as a result of the deposition of insoluble protein fibrillar clumps known as amyloid. This deposition mostly limits normal cellular function and signaling. This build-up of amyloid in vivo results in a variety of illnesses in the body, including type 2 diabetes, several neurodegenerative diseases (such as Alzheimer's disease and spongiform encephalopathy), and Alzheimer's disease. Growing interest has been demonstrated in nanoparticles as a potential treatments for amyloidosis throughout the past few decades. Inorganic nanoparticles are one of them and have also been in substantial research as a potential anti-amyloid drug. Inorganic nanoparticles have emerged as a good study candidates because of their nano size, distinctive physical characteristics, and capacity to traverse the blood-brain barrier. In the current review, we have focused on the effects of different types of inorganic nanoparticles on amyloidogenesis and attempted to understand their underlying mechanism of action.

Keywords: Inorganic nanoparticle; amyloid; amyloidogenesis; fibrillation; quantum dots; thioflavin T.

PubMed Disclaimer