Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Nov;50(11):7154-7166.
doi: 10.1002/mp.16575. Epub 2023 Jul 11.

FLASH dose rate calculation based on log files in proton pencil beam scanning therapy

Affiliations

FLASH dose rate calculation based on log files in proton pencil beam scanning therapy

Chanil Jeon et al. Med Phys. 2023 Nov.

Abstract

Background: In radiation therapy, irradiating healthy normal tissues in the beam trajectories is inevitable. This unnecessary dose means that patients undergoing treatment risk developing side effects. Recently, FLASH radiotherapy delivering ultra-high-dose-rate beams has been re-examined because of its normal-tissue-sparing effect. To confirm the mean and instantaneous dose rates of the FLASH beam, stable and accurate dosimetry is required.

Purpose: Detailed verification of the FLASH effect requires dosimeters and a method to measure the average and instantaneous dose rate stably for 2- or 3-dimensional dose distributions. To verify the delivered FLASH beam, we utilized machine log files from the built-in monitor chamber to develop a dosimetry method to calculate the dose and average/instantaneous dose rate distributions in two or three dimensions in a phantom.

Methods: To create a spread-out Bragg peak (SOBP) and deliver a uniform dose in a target, a mini-ridge filter was created with a 3D printer. Proton pencil beam line scanning plans of 2 × 2 cm2 , 3 × 3 cm2 , 4 × 4 cm2 , and round shapes with 2.3 cm diameter patterns delivering 230 MeV energy protons were created. The absorbed dose in the solid water phantom of each plan was measured using a PPC05 ionization chamber (IBA Dosimetry, Virginia, USA) in the SOBP region, and the log files for each plan were exported from the treatment control system console. Using these log files, the delivered dose and average dose rate were calculated using two methods: a direct method and a Monte Carlo (MC) simulation method that uses log file information. The computed and average dose rates were compared with the ionization chamber measurements. Additionally, instantaneous dose rates in user-defined volumes were calculated using the MC simulation method with a temporal resolution of 5 ms.

Results: Compared to ionization chamber dosimetry, 10 of 12 cases using the direct calculation method and 9 of 11 cases using the MC method had a dose difference below ±3%. Nine of 12 cases using the direct calculation method and 8 of 11 cases using the MC method had dose rate differences below ±3%. The average and maximum dose differences for the direct calculation and MC method were-0.17, +0.72%, and -3.15, +3.32%, respectively. For the dose rate difference, the average and maximum for the direct calculation and MC method were +1.26, +1.12%, and +3.75, +3.15%, respectively. In the instantaneous dose rate calculation with the MC simulation, a large fluctuation with a maximum of 163 Gy/s and a minimum of 4.29 Gy/s instantaneous dose rate was observed in a specific position, whereas the mean dose rate was 62 Gy/s.

Conclusions: We successfully developed methods in which machine log files are used to calculate the dose and the average and instantaneous dose rates for FLASH radiotherapy and demonstrated the feasibility of verifying the delivered FLASH beams.

PubMed Disclaimer

References

REFERENCES

    1. Rosenblatt E, Zubizarreta E. Radiotherapy in cancer care: facing the global challenge. International Atomic Energy Agency Vienna. 2017.
    1. Favaudon V, Caplier L, Monceau V, et al. Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice. Sci Transl Med. 2014;6(245):245ra293-245ra293.
    1. Bourhis J, Sozzi WJ, Jorge PG, et al. Treatment of a first patient with FLASH-radiotherapy. Radiother Oncol. 2019;139:18-22.
    1. Vozenin M-C, De Fornel P, Petersson K, et al. The advantage of FLASH radiotherapy confirmed in mini-pig and cat-cancer patientsthe advantage of flash radiotherapy. Clin Cancer Res. 2019;25(1):35-42.
    1. Buonanno M, Grilj V, Brenner DJ. Biological effects in normal cells exposed to FLASH dose rate protons. Radiother Oncol. 2019;139:51-55.

LinkOut - more resources