Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Jul 11;23(1):256.
doi: 10.1186/s12890-023-02550-0.

Validation of the recording of idiopathic pulmonary fibrosis in routinely collected electronic healthcare records in England

Affiliations

Validation of the recording of idiopathic pulmonary fibrosis in routinely collected electronic healthcare records in England

Ann Morgan et al. BMC Pulm Med. .

Abstract

Background: Routinely-collected healthcare data provide a valuable resource for epidemiological research. Validation studies have shown that for most conditions, simple lists of clinical codes can reliably be used for case finding in primary care, however, studies exploring the robustness of this approach are lacking for diseases such as idiopathic pulmonary fibrosis (IPF) which are largely managed in secondary care.

Method: Using the UK's Clinical Practice Research Datalink (CPRD) Aurum dataset, which comprises patient-level primary care records linked to national hospital admissions and cause-of-death data, we compared the positive predictive value (PPV) of eight diagnostic algorithms. Algorithms were developed based on the literature and IPF diagnostic guidelines using combinations of clinical codes in primary and secondary care (SNOMED-CT or ICD-10) with/without additional information. The positive predictive value (PPV) was estimated for each algorithm using the death record as the gold standard. Utilization of the reviewed codes across the study period was observed to evaluate any change in coding practices over time.

Result: A total of 17,559 individuals had a least one record indicative of IPF in one or more of our three linked datasets between 2008 and 2018. The PPV of case-finding algorithms based on clinical codes alone ranged from 64.4% (95%CI:63.3-65.3) for a "broad" codeset to 74.9% (95%CI:72.8-76.9) for a "narrow" codeset comprising highly-specific codes. Adding confirmatory evidence, such as a CT scan, increased the PPV of our narrow code-based algorithm to 79.2% (95%CI:76.4-81.8) but reduced the sensitivity to under 10%. Adding evidence of hospitalisation to the standalone code-based algorithms also improved PPV, (PPV = 78.4 vs. 64.4%; sensitivity = 53.5% vs. 38.1%). IPF coding practices changed over time, with the increased use of specific IPF codes.

Conclusion: High diagnostic validity was achieved by using a restricted set of IPF codes. While adding confirmatory evidence increased diagnostic accuracy, the benefits of this approach need to be weighed against the inevitable loss of sample size and convenience. We would recommend use of an algorithm based on a broader IPF code set coupled with evidence of hospitalisation.

Keywords: CPRD; Diagnostic codes; HES; Idiopathic pulmonary fibrosis; Interstitial lung disease; Pulmonary fibrosis; Validation.

PubMed Disclaimer

Conflict of interest statement

RG is a current employee of Gilead Sciences, outside the submitted work. JKQ has received grants from The Health Foundation, MRC, GSK, Bayer, BI, British Lung Foundation, IQVIA, Chiesi AZ, Insmed and Asthma UK. JKQ has received personal fees for advisory board participation or speaking fees from GlaxoSmithKline, Boehringer Ingelheim, AstraZeneca, Bayer and Insmed. PMG has received grants from the MRC, Boehringer Ingelheim and Roche Pharmaceuticals and personal fees from Boehringer Ingelheim, Roche Pharmaceuticals, Teva, Cippla, AZ and Brainomix. AM has nothing to disclose.

Figures

Fig. 1
Fig. 1
Trends in the use of selected IPF clinical codes in CPRD Aurum primary care data, 2008–2018
Fig. 2
Fig. 2
Concordance in the recording of IPF across ONS, CPRD Aurum and HES-APC. ONS, study eligible population with any cause of death (underlying or contributory) as IPF in their death record during the study period; Aurum, patients with one clinical code denoting IPF in Aurum (using a broad set of codes) and had died for any reason during the study period; HES-APC, patients admitted to the hospital for IPF at some point prior to their death for any reason (during the study period)

Similar articles

Cited by

References

    1. Raghu G, Collard HR, Egan JJ, Martinez FJ, Behr J, Brown KK, ATS/ERS/JRS/ALAT Committee on Idiopathic Pulmonary Fibrosis et al. An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. Am J Respir Crit Care Med. 2011;183(6):788–824. doi: 10.1164/rccm.2009-040GL. - DOI - PMC - PubMed
    1. Kaunisto J, Salomaa ER, Hodgson U, Kaarteenaho R, Kankaanranta H, Koli K, et al. Demographics and survival of patients with idiopathic pulmonary fibrosis in the finnish IPF registry. ERJ Open Res. 2019;5(3):00170–2018. doi: 10.1183/23120541.00170-2018. - DOI - PMC - PubMed
    1. King TE, Jr, Albera C, Bradford WZ, Costabel U, du Bois RM, Leff JA, et al. All-cause mortality rate in patients with idiopathic pulmonary fibrosis. Implications for the design and execution of clinical trials. Am J Respir Crit Care Med. 2014;189(7):825–31. doi: 10.1164/rccm.201311-1951OC. - DOI - PubMed
    1. Maher TM, Bendstrup E, Dron L, Langley J, Smith G, Khalid JM, et al. Global incidence and prevalence of idiopathic pulmonary fibrosis. Respir Res. 2021;22(1):197. doi: 10.1186/s12931-021-01791-z. - DOI - PMC - PubMed
    1. Koteci A, Morgan A, George PM, Quint JK. Incidence and prevalence of interstitial lung diseases worldwide: a systematic literature review. BMJ Open Respir Res. 2023;10(1):e001291. 10.1136/bmjresp-2022-001291. - PMC - PubMed

LinkOut - more resources