On the evolution of polysensory superior temporal sulcus and middle temporal gyrus: A key component of the semantic system in the human brain
- PMID: 37434287
- DOI: 10.1002/cne.25521
On the evolution of polysensory superior temporal sulcus and middle temporal gyrus: A key component of the semantic system in the human brain
Abstract
The primary auditory cortex and other early auditory cortical areas lie on Heschl's gyrus within the Sylvian fissure. On the adjacent lateral surface of the superior temporal gyrus, the cortex processes higher order auditory information leading to auditory perception. On the ventral surface of the temporal lobe in the primate brain, there are areas that process higher order visual information leading to visual perception. These sensory-specific auditory and visual processing regions are separated by areas that integrate multisensory information within the deep superior temporal sulcus in both the macaque monkey and human brains. In the human brain, the multisensory integration cortex expands and forms the adjacent middle temporal gyrus. The expansion of this multisensory region in the language-dominant hemisphere of the human brain is critical for the emergence of semantic processing, namely, the processing of conceptual information that is not sensory specific but rather relies on multisensory integration.
Keywords: middle temporal gyrus; semantic system; superior temporal sulcus.
© 2023 The Authors. The Journal of Comparative Neurology published by Wiley Periodicals LLC.
Similar articles
-
Stimulus-dependent activations and attention-related modulations in the auditory cortex: a meta-analysis of fMRI studies.Hear Res. 2014 Jan;307:29-41. doi: 10.1016/j.heares.2013.08.001. Epub 2013 Aug 11. Hear Res. 2014. PMID: 23938208 Review.
-
Heschl's gyrus fiber intersection area: a new insight on the connectivity of the auditory-language hub.Neurosurg Focus. 2020 Feb 1;48(2):E7. doi: 10.3171/2019.11.FOCUS19778. Neurosurg Focus. 2020. PMID: 32006945
-
A lexical semantic hub for heteromodal naming in middle fusiform gyrus.Brain. 2018 Jul 1;141(7):2112-2126. doi: 10.1093/brain/awy120. Brain. 2018. PMID: 29860298 Free PMC article.
-
Processing of auditory novelty in human cortex during a semantic categorization task.Hear Res. 2024 Mar 15;444:108972. doi: 10.1016/j.heares.2024.108972. Epub 2024 Feb 11. Hear Res. 2024. PMID: 38359485 Free PMC article.
-
[Auditory perception and language: functional imaging of speech sensitive auditory cortex].Rev Neurol (Paris). 2001 Sep;157(8-9 Pt 1):837-46. Rev Neurol (Paris). 2001. PMID: 11677406 Review. French.
Cited by
-
Structural and functional changes of anterior cingulate cortex subregions in migraine without aura: relationships with pain sensation and pain emotion.Cereb Cortex. 2024 Jan 31;34(2):bhae040. doi: 10.1093/cercor/bhae040. Cereb Cortex. 2024. PMID: 38342690 Free PMC article.
-
Frontotemporal bursting supports human working memory.bioRxiv [Preprint]. 2025 Jul 27:2025.07.26.666946. doi: 10.1101/2025.07.26.666946. bioRxiv. 2025. PMID: 40777455 Free PMC article. Preprint.
-
Self-efficacy as a mediator of neuroticism and perceived stress: Neural perspectives on healthy aging.Int J Clin Health Psychol. 2024 Oct-Dec;24(4):100521. doi: 10.1016/j.ijchp.2024.100521. Epub 2024 Nov 15. Int J Clin Health Psychol. 2024. PMID: 39618909 Free PMC article.
-
Insights into structural deviations in attention deficit hyperactivity disorder (ADHD) and comorbidities using big data-derived brain charts: a cross-sectional study.Quant Imaging Med Surg. 2025 Sep 1;15(9):8320-8332. doi: 10.21037/qims-2024-2707. Epub 2025 Aug 15. Quant Imaging Med Surg. 2025. PMID: 40893535 Free PMC article.
-
Dissecting the heterogeneity of autism spectrum disorder with sensory behavior, brain, and epigenetic factors.Transl Psychiatry. 2025 Sep 1;15(1):337. doi: 10.1038/s41398-025-03566-2. Transl Psychiatry. 2025. PMID: 40890125 Free PMC article.
References
REFERENCES
-
- Baylis, G. C., Rolls, E. T., & Leonard, C. M. (1987). Functional subdivisions of the temporal lobe neocortex. Journal of Neuroscience, 7, 330-342. https://doi.org/10.1523/JNEUROSCI.07-02-00330.1987
-
- Beauchamp, M. S., Lee, K. E., Argall, B. D., & Martin, A. (2004). Integration of auditory and visual information about objects in superior temporal sulcus. Neuron, 41, 809-823. https://doi.org/10.1016/S0896-6273(04)00070-4
-
- Benevento, L. A., Fallon, J., Davis, B. J., & Rezak, M. (1977). Auditory-visual interaction in single cells in the cortex of the superior temporal sulcus and the orbital frontal cortex of the macaque monkey. Experimental Neurology, 57, 849-872. https://doi.org/10.1016/0014-4886(77)90112-1
-
- Binder, J. R. (2000). Human temporal lobe activation by speech and nonspeech sounds. Cerebral Cortex, 10, 512-528. https://doi.org/10.1093/cercor/10.5.512
-
- Binder, J. R., Desai, R. H., Graves, W. W., & Conant, L. L. (2009). Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cerebral Cortex, 19, 2767-2796. https://doi.org/10.1093/cercor/bhp055
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources