Glycogen-binding protein STBD1: Molecule and role in pathophysiology
- PMID: 37435888
- DOI: 10.1002/jcp.31078
Glycogen-binding protein STBD1: Molecule and role in pathophysiology
Abstract
Starch-binding domain-containing protein 1 (STBD1) is a glycogen-binding protein discovered in skeletal muscle gene differential expression that is pivotal to cellular energy metabolism. Recent studies have indicated that STBD1 is involved in many physiological processes, such as glycophagy, glycogen accumulation, and lipid droplet formation. Moreover, dysregulation of STBD1 causes multiple diseases, including cardiovascular disease, metabolic disease, and even cancer. Deletions and/or mutations in STBD1 promote tumorigenesis. Therefore, STBD1 has garnered considerable interest in the pathology community. In this review, we first summarized the current understanding of STBD1, including its structure, subcellular localization, tissue distribution, and biological functions. Next, we examined the roles and molecular mechanisms of STBD1 in related diseases. Based on available research, we discussed the novel function and future of STBD1, including its potential application as a therapeutic target in glycogen-related diseases. Given the significance of STBD1 in energy metabolism, an in-depth understanding of the protein is crucial for understanding physiological processes and developing therapeutic strategies for related diseases.
Keywords: Pompe disease; STBD1; cancer; diabetic cardiomyopathy; glycophagy; ischemic myocardial injury.
© 2023 Wiley Periodicals LLC.
Similar articles
-
Stbd1 is highly elevated in skeletal muscle of Pompe disease mice but suppression of its expression does not affect lysosomal glycogen accumulation.Mol Genet Metab. 2013 Jul;109(3):312-4. doi: 10.1016/j.ymgme.2013.05.004. Epub 2013 May 18. Mol Genet Metab. 2013. PMID: 23726947
-
Starch-binding domain-containing protein 1 (Stbd1) and glycogen metabolism: Identification of the Atg8 family interacting motif (AIM) in Stbd1 required for interaction with GABARAPL1.Biochem Biophys Res Commun. 2011 Sep 30;413(3):420-5. doi: 10.1016/j.bbrc.2011.08.106. Epub 2011 Aug 27. Biochem Biophys Res Commun. 2011. PMID: 21893048 Free PMC article.
-
Starch Binding Domain-containing Protein 1 Plays a Dominant Role in Glycogen Transport to Lysosomes in Liver.J Biol Chem. 2016 Aug 5;291(32):16479-84. doi: 10.1074/jbc.C116.741397. Epub 2016 Jun 29. J Biol Chem. 2016. PMID: 27358407 Free PMC article.
-
Glycophagy: An emerging target in pathology.Clin Chim Acta. 2018 Sep;484:298-303. doi: 10.1016/j.cca.2018.06.014. Epub 2018 Jun 9. Clin Chim Acta. 2018. PMID: 29894781 Review.
-
Glycogen-autophagy: Molecular machinery and cellular mechanisms of glycophagy.J Biol Chem. 2022 Jul;298(7):102093. doi: 10.1016/j.jbc.2022.102093. Epub 2022 May 30. J Biol Chem. 2022. PMID: 35654138 Free PMC article. Review.
Cited by
-
From Acid Alpha-Glucosidase Deficiency to Autophagy: Understanding the Bases of POMPE Disease.Int J Mol Sci. 2023 Aug 5;24(15):12481. doi: 10.3390/ijms241512481. Int J Mol Sci. 2023. PMID: 37569856 Free PMC article.
-
Methods for detection of cardiac glycogen-autophagy.Autophagy Rep. 2024 Sep 22;3(1):2405331. doi: 10.1080/27694127.2024.2405331. eCollection 2024. Autophagy Rep. 2024. PMID: 40395528 Free PMC article.
-
Clinical and Metabolic Signatures of FAM47E-SHROOM3 Haplotypes in a General Population Sample.Kidney Int Rep. 2025 Feb 25;10(5):1495-1508. doi: 10.1016/j.ekir.2025.02.018. eCollection 2025 May. Kidney Int Rep. 2025. PMID: 40485680 Free PMC article.
-
Asiatic Acid Alleviates Renal Damage by Upregulating STBD1-Mediated Glycophagy in Diabetic Kidney Disease.Biomedicines. 2025 Jun 25;13(7):1544. doi: 10.3390/biomedicines13071544. Biomedicines. 2025. PMID: 40722620 Free PMC article.
References
REFERENCES
-
- Alexander, J. P., & Cravatt, B. F. (2006). The putative endocannabinoid transport blocker LY2183240 is a potent inhibitor of FAAH and several other brain serine hydrolases. Journal of the American Chemical Society, 128(30), 9699-9704. https://doi.org/10.1021/ja062999h
-
- Amalfitano, A., Bengur, A. R., Morse, R. P., Majure, J. M., Case, L. E., Veerling, D. L., Mackey, J., Kishnani, P., Smith, W., McVie-Wylie, A., Sullivan, J. A., Hoganson, G. E., Phillips, J. A., Schaefer, G. B., Charrow, J., Ware, R. E., Bossen, E. H., & Chen, Y. T. (2001). Recombinant human acid α-glucosidase enzyme therapy for infantile glycogen storage disease type II: Results of a phase I/II clinical trial. Genetics in Medicine, 3(2), 132-138. https://doi.org/10.1038/gim200127
-
- Amaravadi, R. K., Yu, D., Lum, J. J., Bui, T., Christophorou, M. A., Evan, G. I., Thomas-Tikhonenko, A., & Thompson, C. B. (2007). Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. Journal of Clinical Investigation, 117(2), 326-336. https://doi.org/10.1172/JCI28833
-
- Arruda, A. P., Pers, B. M., Parlakgül, G., Güney, E., Inouye, K., & Hotamisligil, G. S. (2014). Chronic enrichment of hepatic endoplasmic reticulum-mitochondria contact leads to mitochondrial dysfunction in obesity. Nature Medicine, 20(12), 1427-1435. https://doi.org/10.1038/nm.3735
-
- Avagimyan, A., Popov, S., & Shalnova, S. (2022). The pathophysiological basis of diabetic cardiomyopathy development. Current Problems in Cardiology, 47(9), 101156. https://doi.org/10.1016/j.cpcardiol.2022.101156
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials