Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Sep;238(9):2103-2119.
doi: 10.1002/jcp.31070. Epub 2023 Jul 12.

The aminopeptidase LAP3 suppression accelerates myogenic differentiation via the AKT-TFE3 pathway in C2C12 myoblasts

Affiliations

The aminopeptidase LAP3 suppression accelerates myogenic differentiation via the AKT-TFE3 pathway in C2C12 myoblasts

Shion Osana et al. J Cell Physiol. 2023 Sep.

Abstract

Skeletal muscle maintenance depends largely on muscle stem cells (satellite cells) that supply myoblasts required for muscle regeneration and growth. The ubiquitin-proteasome system is the major intracellular protein degradation pathway. We previously reported that proteasome dysfunction in skeletal muscle significantly impairs muscle growth and development. Furthermore, the inhibition of aminopeptidase, a proteolytic enzyme that removes amino acids from the termini of peptides derived from proteasomal proteolysis, impairs the proliferation and differentiation ability of C2C12 myoblasts. However, no evidence has been reported on the role of aminopeptidases with different substrate specificities on myogenesis. In this study, therefore, we investigated whether the knockdown of aminopeptidases in differentiating C2C12 myoblasts affects myogenesis. The knockdown of the X-prolyl aminopeptidase 1, aspartyl aminopeptidase, leucyl-cystinyl aminopeptidase, methionyl aminopeptidase 1, methionyl aminopeptidase 2, puromycine-sensitive aminopeptidase, and arginyl aminopeptidase like 1 gene in C2C12 myoblasts resulted in defective myogenic differentiation. Surprisingly, the knockdown of leucine aminopeptidase 3 (LAP3) in C2C12 myoblasts promoted myogenic differentiation. We also found that suppression of LAP3 expression in C2C12 myoblasts resulted in the inhibition of proteasomal proteolysis, decreased intracellular branched-chain amino acid levels, and enhanced mTORC2-mediated AKT phosphorylation (S473). Furthermore, phosphorylated AKT induced the translocation of TFE3 from the nucleus to the cytoplasm, promoting myogenic differentiation through increased expression of myogenin. Overall, our study highlights the association of aminopeptidases with myogenic differentiation.

Keywords: C2C12 myoblast; LAP3; TFE3; aminopeptidase; myogenic differentiation; myogenin.

PubMed Disclaimer

Similar articles

Cited by

References

REFERENCES

    1. Abmayr, S. M., & Pavlath, G. K. (2012). Myoblast fusion: Lessons from flies and mice. Development, 139(4), 641-656. https://doi.org/10.1242/dev.068353
    1. Ambrosio, F., Kadi, F., Lexell, J., Fitzgerald, G. K., Boninger, M. L., & Huard, J. (2009). The effect of muscle loading on skeletal muscle regenerative potential: An update of current research findings relating to aging and neuromuscular pathology. American Journal of Physical Medicine & Rehabilitation, 88(2), 145-155. https://doi.org/10.1097/PHM.0b013e3181951fc5
    1. Collins, G. A., & Goldberg, A. L. (2017). The logic of the 26S proteasome. Cell, 169(5), 792-806. https://doi.org/10.1016/j.cell.2017.04.023
    1. Endo, T., & Goto, S. (1992). Retinoblastoma gene product Rb accumulates during myogenic differentiation and is deinduced by the expression of SV40 large T antigen. The Journal of Biochemistry, 112(4), 427-430. https://doi.org/10.1093/oxfordjournals.jbchem.a123916
    1. Fernando, P., Kelly, J. F., Balazsi, K., Slack, R. S., & Megeney, L. A. (2002). Caspase 3 activity is required for skeletal muscle differentiation. Proceedings of the National Academy of Sciences, 99(17), 11025-11030. https://doi.org/10.1073/pnas.162172899

Publication types

MeSH terms

Substances

LinkOut - more resources