Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Aug:165:110959.
doi: 10.1016/j.ejrad.2023.110959. Epub 2023 Jul 4.

Non-contrast CT radiomics and machine learning for outcomes prediction of patients with acute ischemic stroke receiving conventional treatment

Affiliations

Non-contrast CT radiomics and machine learning for outcomes prediction of patients with acute ischemic stroke receiving conventional treatment

Limin Zhang et al. Eur J Radiol. 2023 Aug.

Abstract

Purpose: Accurate prediction of outcomes for patients with acute ischemic stroke (AIS) is crucial for clinical decision-making. In this study, we developed prediction models based on non-contrast computed tomography (NCCT) radiomics and clinical features to predict the modified Rankin Scale (mRS) six months after hospital discharge.

Method: A two-center retrospective cohort of 240 AIS patients receiving conventional treatment was included. Radiomics features of the infarct area were extracted from baseline NCCT scans. We applied Kruskal-Wallis (KW) test and recursive feature elimination (RFE) to select features for developing clinical, radiomics, and fusion models (with clinical data and radiomics features), using support vector machine (SVM) algorithm. The prediction performance of the models was assessed by accuracy, sensitivity, specificity, F1 score, and receiver operating characteristic (ROC) curve. Shapley Additive exPlanations (SHAP) was applied to analyze the interpretability and predictor importance of the model.

Results: A total of 1454 texture features were extracted from the NCCT images. In the test cohort, the ROC analysis showed that the radiomics model and the fusion model showed AUCs of 0.705 and 0.857, which outperformed the clinical model (0.643), with the fusion model exhibiting the best performance. Additionally, the accuracy and sensitivity of the fusion model were also the best among the models (84.8% and 93.8%, respectively).

Conclusions: The model based on NCCT radiomics and machine learning has high predictive efficiency for the prognosis of AIS patients receiving conventional treatment, which can be used to assist early personalized clinical therapy.

Keywords: Acute ischemic stroke; Non-contrast computed tomography; Prognosis; Radiomics; Support vector machine.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

Cited by

LinkOut - more resources