Analysis of DIA proteomics data using MSFragger-DIA and FragPipe computational platform
- PMID: 37438352
- PMCID: PMC10338508
- DOI: 10.1038/s41467-023-39869-5
Analysis of DIA proteomics data using MSFragger-DIA and FragPipe computational platform
Abstract
Liquid chromatography (LC) coupled with data-independent acquisition (DIA) mass spectrometry (MS) has been increasingly used in quantitative proteomics studies. Here, we present a fast and sensitive approach for direct peptide identification from DIA data, MSFragger-DIA, which leverages the unmatched speed of the fragment ion indexing-based search engine MSFragger. Different from most existing methods, MSFragger-DIA conducts a database search of the DIA tandem mass (MS/MS) spectra prior to spectral feature detection and peak tracing across the LC dimension. To streamline the analysis of DIA data and enable easy reproducibility, we integrate MSFragger-DIA into the FragPipe computational platform for seamless support of peptide identification and spectral library building from DIA, data-dependent acquisition (DDA), or both data types combined. We compare MSFragger-DIA with other DIA tools, such as DIA-Umpire based workflow in FragPipe, Spectronaut, DIA-NN library-free, and MaxDIA. We demonstrate the fast, sensitive, and accurate performance of MSFragger-DIA across a variety of sample types and data acquisition schemes, including single-cell proteomics, phosphoproteomics, and large-scale tumor proteome profiling studies.
© 2023. The Author(s).
Conflict of interest statement
The authors declare no competing interests.
Figures






Similar articles
-
MSFragger-DDA+ enhances peptide identification sensitivity with full isolation window search.Nat Commun. 2025 Apr 8;16(1):3329. doi: 10.1038/s41467-025-58728-z. Nat Commun. 2025. PMID: 40199897 Free PMC article.
-
MSFragger-DDA+ Enhances Peptide Identification Sensitivity with Full Isolation Window Search.bioRxiv [Preprint]. 2024 Oct 15:2024.10.12.618041. doi: 10.1101/2024.10.12.618041. bioRxiv. 2024. Update in: Nat Commun. 2025 Apr 8;16(1):3329. doi: 10.1038/s41467-025-58728-z. PMID: 39463976 Free PMC article. Updated. Preprint.
-
Data Processing and Analysis for DIA-Based Phosphoproteomics Using Spectronaut.Methods Mol Biol. 2021;2361:95-107. doi: 10.1007/978-1-0716-1641-3_6. Methods Mol Biol. 2021. PMID: 34236657
-
Data-Independent Acquisition Mass Spectrometry-Based Proteomics and Software Tools: A Glimpse in 2020.Proteomics. 2020 Sep;20(17-18):e1900276. doi: 10.1002/pmic.201900276. Epub 2020 May 19. Proteomics. 2020. PMID: 32275110 Review.
-
Technical advances in proteomics: new developments in data-independent acquisition.F1000Res. 2016 Mar 31;5:F1000 Faculty Rev-419. doi: 10.12688/f1000research.7042.1. eCollection 2016. F1000Res. 2016. PMID: 27092249 Free PMC article. Review.
Cited by
-
Immunopeptidomics-based identification of naturally presented non-canonical circRNA-derived peptides.Nat Commun. 2024 Mar 15;15(1):2357. doi: 10.1038/s41467-024-46408-3. Nat Commun. 2024. PMID: 38490980 Free PMC article.
-
Comprehensive Mass Spectral Libraries of Human Thyroid Tissues and Cells.Sci Data. 2024 Dec 28;11(1):1448. doi: 10.1038/s41597-024-04322-9. Sci Data. 2024. PMID: 39732735 Free PMC article.
-
Integrated View of Baseline Protein Expression in Human Tissues Using Public Data Independent Acquisition Data Sets.J Proteome Res. 2025 Feb 7;24(2):685-695. doi: 10.1021/acs.jproteome.4c00788. Epub 2025 Jan 7. J Proteome Res. 2025. PMID: 39764611 Free PMC article.
-
Statistical Testing for Protein Equivalence Identifies Core Functional Modules Conserved across 360 Cancer Cell Lines and Presents a General Approach to Investigating Biological Systems.J Proteome Res. 2024 Jun 7;23(6):2169-2185. doi: 10.1021/acs.jproteome.4c00131. Epub 2024 May 28. J Proteome Res. 2024. PMID: 38804581 Free PMC article.
-
Benchmarking SILAC Proteomics Workflows and Data Analysis Platforms.Mol Cell Proteomics. 2025 Jun;24(6):100980. doi: 10.1016/j.mcpro.2025.100980. Epub 2025 Apr 30. Mol Cell Proteomics. 2025. PMID: 40315959 Free PMC article.
References
-
- Kitata, R. B., Yang, J. C. & Chen, Y. J. Advances in data-independent acquisition mass spectrometry towards comprehensive digital proteome landscape. Mass Spectrom. Rev. e21781 (2022). - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources