Regulating photosalient behavior in dynamic metal-organic crystals
- PMID: 37452109
- PMCID: PMC10349121
- DOI: 10.1038/s42004-023-00951-0
Regulating photosalient behavior in dynamic metal-organic crystals
Abstract
Dynamic photoactuating crystals have become a sensation due to their potential applications in developing smart medical devices, molecular machines, artificial muscles, flexible electronics actuators, probes and microrobots. Here we report the synthesis of two iso-structural metal-organic crystals, [Zn(4-ohbz)2(4-nvp)2] (1) and [Cd(4-ohbz)2(4-nvp)2] (2) {H4-ohbz = 4-hydroxy benzoic acid; 4-nvp = 4-(1-naphthylvinyl)pyridine} which undergo topochemical [2 + 2] cycloaddition under UV irradiation as well as sunlight to generate a dimerized product of discrete metal-complex [Zn(4-ohbz)2(rctt-4-pncb)] {rctt-4-pncb = 1,3-bis(4'-pyridyl)-2,4-bis(naphthyl)cyclobutane} (1') and one-dimensional coordination polymer (1D CP) [Cd(4-ohbz)2(rctt-4-pncb)] (2') respectively, in a single-crystal-to-single-crystal (SCSC) process. The Zn-based compound demonstrates photosalient behaviour, wherein crystals show jumping, splitting, rolling, and swelling upon UV irradiation. However, the Cd-based crystals do not show such behaviour maintaining the initial supramolecular packing and space group. Thus the photomechanical behaviour can be induced by choosing a suitable metal ion. The above findings are thoroughly validated by quantitative density functional theory (DFT) calculations which show that the Zn-based crystal shifts towards an orthorhombic structure to resolve the anisotropic UV-induced mechanical strain. Furthermore, the mechano-structure-property relationship has been established by complimentary nanoindentation measurements, which are in-line with the DFT-predicted single crystal values.
© 2023. The Author(s).
Conflict of interest statement
The authors declare no competing interests.
Figures






References
-
- Alexander, R. M. Principles of Animal Locomotion, Princeton University Press, Oxford, (2006).
-
- Tony DA. Ecology of the Fabaceae in the Sydney region: fire, ants and the soil seedbank. Cunninghamia. 1996;4:531–551.
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous