Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Sep 1;325(3):C592-C598.
doi: 10.1152/ajpcell.00447.2022. Epub 2023 Jul 17.

G-protein tonic inhibition of calcium channels in pancreatic β-cells

Affiliations
Free article

G-protein tonic inhibition of calcium channels in pancreatic β-cells

Tayde Quiroz-Acosta et al. Am J Physiol Cell Physiol. .
Free article

Abstract

Voltage-gated calcium channels (CaV) conduct Ca2+ influx promoting neurotransmitters and hormone release. CaV are finely regulated by voltage-dependent and independent pathways either by G-protein-coupled receptors (GPCRs) or intramembrane lipids, respectively, in neurons and glands. Interestingly, pancreatic β-cells are abundantly innervated by both sympathetic and parasympathetic neurons, while a variety of high-voltage activated (HVA) Ca2+ channels are present in these cells. Thus, autonomic system seems to exert a tonic inhibition on HVA Ca2+ channels throughout GPCRs, constitutively preventing hormone secretion. Therefore, this work aimed to investigate noradrenergic and cholinergic inhibition of HVA Ca2+ channels in pancreatic β-cells. Experiments were conducted in pancreatic β-cells of rat by using patch-clamping methods, immunocytochemistry, pharmacological probes, and biochemical reagents. A voltage-clamp protocol with a strong depolarizing prepulse was used to unmask tonic inhibition. Herein, we consistently find a basal tonic inhibition of HVA Ca2+ channels according to a GPCRs regulation. Facilitation ratio is enhanced by noradrenaline (NA) according to a voltage-dependent regulation and a membrane-delimited mechanism, while no facilitation changes are observed with carbachol or phosphatidylinositol 4,5-bisphosphate (PIP2). Furthermore, carbachol or intramembrane lipids, such as PIP2, do not change facilitation ratio according to a voltage-independent regulation. Together, HVA Ca2+ channels of pancreatic β-cells are constitutively inhibited by GPCRs, suggesting a natural brake preventing cells from exhaustive insulin secretion.NEW & NOTEWORTHY Our results support the hypothesis that GPCRs tonically inhibit HVA Ca2+ channels in pancreatic β-cells. A voltage-clamp protocol with a strong depolarizing prepulse was used to unmask voltage-dependent inhibition of Ca2+ channels. The novelty of these results strengthens the critical role of Gβγ's in Ca2+ channel regulation, highlighting kinetic slowing and increased facilitation ratio. Together, HVA Ca2+ channels of pancreatic β-cells are constitutively inhibited by GPCRs underlying fine-tuning modulation of insulin secretion.

Keywords: G-proteins; calcium currents; intramembrane lipids; pancreatic β-cell.

PubMed Disclaimer

Publication types

LinkOut - more resources