1,3-Diamine-Derived Catalysts: Design, Synthesis, and the Use in Enantioselective Mannich Reactions of Ketones
- PMID: 37460110
- PMCID: PMC10407930
- DOI: 10.1021/acs.joc.3c01051
1,3-Diamine-Derived Catalysts: Design, Synthesis, and the Use in Enantioselective Mannich Reactions of Ketones
Abstract
1,3-Diamine-derived catalysts were designed, synthesized, and used in asymmetric Mannich reactions of ketones. The reactions catalyzed by one of the 1,3-diamine derivatives in the presence of acids afforded the Mannich products with high enantioselectivities under mild conditions. In most cases, bond formation occurred at the less-substituted α-position of the ketone carbonyl group. Our results indicate that the primary and the tertiary amines of the 1,3-diamine derivative cooperatively act for the catalysis.
Conflict of interest statement
The authors declare no competing financial interest.
Figures




References
-
- Doyle A. G.; Jacobsen E. N. Small-Molecule H-Bond Donors in Asymmetric Synthesis. Chem. Rev. 2007, 107, 5713–5743. 10.1021/cr068373r. - DOI - PubMed
- Mukherjee S.; Yang J. W.; Hoffmann S.; List B. Asymmetric Enamine Catalysis. Chem. Rev. 2007, 107, 5471–5569. 10.1021/cr0684016. - DOI - PubMed
- Melchiorre P. Cinchona-based Primary Amine Catalysis in the Asymmetric Functionalization of Carbonyl Compounds. Angew. Chem., Int. Ed. 2012, 51, 9748–9770. 10.1002/anie.201109036. - DOI - PubMed
- Zhang L.; Fu N.; Luo S. Pushing the Limits of Aminocatalysis: Enantioselective Transformations of α-Branched β-Ketocarbonyls and Vinyl Ketones by Chiral Primary Amines. Acc. Chem. Res. 2015, 48, 986–997. 10.1021/acs.accounts.5b00028. - DOI - PubMed
- Lee H.-J.; Maruoka K. Design of Bifunctional Amino Tf-Amide Organocatalysts and Application in Various Asymmetric Transformations. Chem. Rec. 2022, 22, e20220000410.1002/tcr.202200004. - DOI - PubMed
- Tanaka F. Amines as Catalysts: Dynamic Features and Kinetic Control of Catalytic Asymmetric Chemical Transformations to form C-C Bonds and Complex Molecules. Chem. Rec. 2023, 23, e20220020710.1002/tcr.202200207. - DOI - PubMed
-
- Erkkilä A.; Majander I.; Pihko P. M. Iminium Catalysis. Chem. Rev. 2007, 107, 5416–5470. 10.1021/cr068388p. - DOI - PubMed
- Nielsen M.; Worgull D.; Zweifel T.; Gschwend B.; Bertelsen S.; Jørgensen L. A. Mechanisms in Aminocatalysis. Chem. Commun. 2011, 47, 632–649. 10.1039/C0CC02417A. - DOI - PubMed
- Jensen K. L.; Dickmeiss G.; Jiang H.; Albrecht Ł.; Jørgensen K. A. The Diarylprolinol Silyl Ether System: A General Organocatalyst. Acc. Chem. Res. 2012, 45, 248–264. 10.1021/ar200149w. - DOI - PubMed
- Li J.-L.; Liu T.-Y.; Chen Y.-C. Aminocatalytic Asymmetric Diels-Alder Reactions via HOMO Activation. Acc. Chem. Res. 2012, 45, 1491–1500. 10.1021/ar3000822. - DOI - PubMed
- Chauhan P.; Mahajan S.; Enders D. Achieving Molecular Complexity via Stereoselective Multiple Domino Reactions Promoted by a Secondary Amine Organocatalyst. Acc. Chem. Res. 2017, 50, 2809–2821. 10.1021/acs.accounts.7b00406. - DOI - PubMed
-
- Lam Y.; Houk K. N. Origins of Stereoselectivity in Intramolecular Aldol Reactions Catalyzed by Cinchona Amines. J. Am. Chem. Soc. 2015, 137, 2116–2127. 10.1021/ja513096x. - DOI - PubMed
- Yu P.; He C. Q.; Simon A.; Li W.; Mose R.; Thøgersen M. K.; Jørgensen K. A.; Houk K. N. Organocatalytic [6+4] Cycloadditions via Zwitterionic Intermediates: Chemo-, Regio-, and Stereoselectivities. J. Am. Chem. Soc. 2018, 140, 13726–13735. 10.1021/jacs.8b07575. - DOI - PubMed
-
- Chen X.; Thøgersen M. K.; Yang L.; Lauridsen R. F.; Xue X.-S.; Jørgensen K. A.; Houk K. N. [8+2] vs [4+2] Cycloadditions of Cyclohexadienamines to Tropone and Heptafulvenes – Mechanisms and Selectivities. J. Am. Chem. Soc. 2021, 143, 934–944. 10.1021/jacs.0c10966. - DOI - PubMed
- Cui H.-L.; Chouthaiwale P. V.; Yin F.; Tanaka F. Reaction-based Mechanistic Investigations of Asymmetric Hetero-Diels-Alder Reactions of Enones with Isatins Catalyzed by Amine-based Three-Component Catalyst Systems. Asian J. Org. Chem. 2016, 5, 153–161. 10.1002/ajoc.201500412. - DOI
- He X.-L.; Xiao Y.-C.; Du W.; Chen Y.-C. Enantioselective Formal [3+3] Cycloadditions of Ketones and Cyclic 1-Azadienes by Cascade Enamine-Enaminde Catalysis. Chem. – Eur. J. 2015, 21, 3443–3448. 10.1002/chem.201404550. - DOI - PubMed
-
- Luo S.; Xu H.; Li J.; Zhang L.; Cheng J.-P. A Simple Primary-Tertiary Diamine-Brønsted Acid Catalyst for Asymmetric Direct Aldol Reactions of Linear Aliphatic Ketones. J. Am. Chem. Soc. 2007, 129, 3074–3075. 10.1021/ja069372j. - DOI - PubMed
- Shi M.; Zhang Q.; Gao J.; Mi X.; Luo S. Catalytic Asymmetric α-Alkylsulfenylation with a Disulfide Reagent. Angew. Chem., Int. Ed. 2022, 61, e20220904410.1002/anie.202209044. - DOI - PubMed
- Fu N.; Zhang L.; Li J.; Luo S.; Cheng J.-P. Chiral Primary Amine Catalyzed Enantioselective Protonation via an Enamine Intermediate. Angew. Chem., Int. Ed. 2011, 50, 11451–11455. 10.1002/anie.201105477. - DOI - PubMed
- Moran A.; Hamilton A.; Bo C.; Melchiorre P. A Mechanistic Rationale for the 9-Amino(9-deoxy)epi Cinchona Alkaloids Catalyzed Asymmetric Reactions via Iminium Ion Activation of Enones. J. Am. Chem. Soc. 2013, 135, 9091–9098. 10.1021/ja404784t. - DOI - PubMed
- Scharinger F.; Pàlvölgyi Á. M.; Weisz M.; Weil M.; Stanetty C.; Schnürch M.; Bica-Schröder K. Sterically Demanding Flexible Phosphoric Acids for Constructing Efficient and Multi-Purpose Asymmetric Organocatalysts. Angew. Chem., Int. Ed. 2022, 61, e20220218910.1002/anie.202202189. - DOI - PMC - PubMed
- Huang M.; Zhang L.; Pan T.; Luo S. Deracemization through Photochemical E/Z Isomerization of Enamines. Science 2022, 375, 869–874. 10.1126/science.abl4922. - DOI - PubMed
- Rezayee N. M.; Enemærke V. J.; Linde S. T.; Lamhauge J. N.; Reyes-Rodríguez G. J.; Jørgensen K. A.; Lu C.; Houk K. N. An Asymmetric SN2 Dynamic Kinetic Resolution. J. Am. Chem. Soc. 2021, 143, 7509–7520. 10.1021/jacs.1c02193. - DOI - PubMed
LinkOut - more resources
Full Text Sources
Other Literature Sources