Trans-scale thermal signaling in biological systems
- PMID: 37461189
- PMCID: PMC10464929
- DOI: 10.1093/jb/mvad053
Trans-scale thermal signaling in biological systems
Abstract
Biochemical reactions in cells serve as the endogenous source of heat, maintaining a constant body temperature. This process requires proper control; otherwise, serious consequences can arise due to the unwanted but unavoidable responses of biological systems to heat. This review aims to present a range of responses to heat in biological systems across various spatial scales. We begin by examining the impaired thermogenesis of malignant hyperthermia in model mice and skeletal muscle cells, demonstrating that the progression of this disease is caused by a positive feedback loop between thermally driven Ca2+ signaling and thermogenesis at the subcellular scale. After we explore thermally driven force generation in both muscle and non-muscle cells, we illustrate how in vitro assays using purified proteins can reveal the heat-responsive properties of proteins and protein assemblies. Building on these experimental findings, we propose the concept of 'trans-scale thermal signaling'.
Keywords: ATPase; fluorescence microscopy; heat-induced calcium release; microheating; type 1 ryanodine receptor. Abbreviations: [Ca2+]i, intracellular Ca2+ concentration; CICR, Ca2+-induced Ca2+ release; ER, endoplasmic reticulum; FDB, flexor digitorum brevis; HEK293 cell, human embryonic kidney 293 cell; HICR, heat-induced Ca2+ release; IP3R, inositol 1,4,5-trisphosphate receptor; MH, malignant hyperthermia; RCC, rapid cooling contracture; RyR1, type 1 ryanodine receptor; SERCA, sarco/endoplasmic reticulum Ca2+-ATPase; SR, sarcoplasmic reticulum; TRP, transient receptor potential; WT, wild type.
© The Author(s) 2022. Published by Oxford University Press on behalf of the Japanese Biochemical Society.
Figures







Similar articles
-
Heat-hypersensitive mutants of ryanodine receptor type 1 revealed by microscopic heating.Proc Natl Acad Sci U S A. 2022 Aug 9;119(32):e2201286119. doi: 10.1073/pnas.2201286119. Epub 2022 Aug 4. Proc Natl Acad Sci U S A. 2022. PMID: 35925888 Free PMC article.
-
Increased sensitivity of the ryanodine receptor to halothane-induced oligomerization in malignant hyperthermia-susceptible human skeletal muscle.J Appl Physiol (1985). 2004 Jan;96(1):11-8. doi: 10.1152/japplphysiol.00537.2003. Epub 2003 Sep 5. J Appl Physiol (1985). 2004. PMID: 12959958
-
Mice with R2509C-RYR1 mutation exhibit dysfunctional Ca2+ dynamics in primary skeletal myocytes.J Gen Physiol. 2022 Nov 7;154(11):e202213136. doi: 10.1085/jgp.202213136. Epub 2022 Oct 6. J Gen Physiol. 2022. PMID: 36200983 Free PMC article.
-
Sarco-Endoplasmic Reticulum Calcium Release Model Based on Changes in the Luminal Calcium Content.Adv Exp Med Biol. 2020;1131:337-370. doi: 10.1007/978-3-030-12457-1_14. Adv Exp Med Biol. 2020. PMID: 31646517 Review.
-
From Muscle-Based Nonshivering Thermogenesis to Malignant Hyperthermia in Mammals.Annu Rev Physiol. 2025 Feb;87(1):131-150. doi: 10.1146/annurev-physiol-022724-105205. Epub 2025 Feb 3. Annu Rev Physiol. 2025. PMID: 39303272 Review.
Cited by
-
Proteomic identification of potential biomarkers for heat tolerance in Caracu beef cattle using high and low thermotolerant groups.BMC Genomics. 2024 Nov 13;25(1):1079. doi: 10.1186/s12864-024-11021-7. BMC Genomics. 2024. PMID: 39538142 Free PMC article.
-
Hybrid Biophysics: Interdisciplinary approaches for trans-scale analysis of organism-environment interactions.Biophys Physicobiol. 2023 Nov 11;20(4):e200043. doi: 10.2142/biophysico.bppb-v20.0043. eCollection 2023. Biophys Physicobiol. 2023. PMID: 38344034 Free PMC article. No abstract available.
-
Physicochemical Perspective of Biological Heterogeneity.ACS Phys Chem Au. 2024 Apr 6;4(4):314-321. doi: 10.1021/acsphyschemau.3c00079. eCollection 2024 Jul 24. ACS Phys Chem Au. 2024. PMID: 39069985 Free PMC article. Review.
References
-
- Nakamura, K., Nakamura, Y., and Kataoka, N. (2022) A hypothalamomedullary network for physiological responses to environmental stresses. Nat. Rev. Neurosci. 23, 35–52 - PubMed
-
- Ikeda, K. and Yamada, T. (2022) Adipose tissue thermogenesis by calcium futile cycling. J. Biochem. 172, 197–203 - PubMed
-
- Matsumura, Y., Osborne, T.F., and Sakai, J. (2022) Epigenetic and environmental regulation of adipocyte function. J. Biochem. 172, 9–16 - PubMed
-
- Schneider, M.F. (1994) Control of calcium-release in functioning skeletal-muscle fibers. Annu. Rev. Physiol. 56, 463–484 - PubMed
-
- Endo, M. (2009) Calcium-induced calcium release in skeletal muscle. Physiol. Rev. 89, 1153–1176 - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous