Coacervate Droplets for Synthetic Cells
- PMID: 37462244
- DOI: 10.1002/smtd.202300496
Coacervate Droplets for Synthetic Cells
Abstract
The design and construction of synthetic cells - human-made microcompartments that mimic features of living cells - have experienced a real boom in the past decade. While many efforts have been geared toward assembling membrane-bounded compartments, coacervate droplets produced by liquid-liquid phase separation have emerged as an alternative membrane-free compartmentalization paradigm. Here, the dual role of coacervate droplets in synthetic cell research is discussed: encapsulated within membrane-enclosed compartments, coacervates act as surrogates of membraneless organelles ubiquitously found in living cells; alternatively, they can be viewed as crowded cytosol-like chassis for constructing integrated synthetic cells. After introducing key concepts of coacervation and illustrating the chemical diversity of coacervate systems, their physicochemical properties and resulting bioinspired functions are emphasized. Moving from suspensions of free floating coacervates, the two nascent roles of these droplets in synthetic cell research are highlighted: organelle-like modules and cytosol-like templates. Building the discussion on recent studies from the literature, the potential of coacervate droplets to assemble integrated synthetic cells capable of multiple life-inspired functions is showcased. Future challenges that are still to be tackled in the field are finally discussed.
Keywords: biomolecular condensates; coacervates; liquid-liquid phase separation; membraneless organelles; synthetic cells.
© 2023 The Authors. Small Methods published by Wiley-VCH GmbH.
Similar articles
-
How Droplets Can Accelerate Reactions─Coacervate Protocells as Catalytic Microcompartments.Acc Chem Res. 2024 Jul 16;57(14):1885-1895. doi: 10.1021/acs.accounts.4c00114. Epub 2024 Jul 5. Acc Chem Res. 2024. PMID: 38968602 Free PMC article.
-
Enzyme-active liquid coacervate microdroplets as artificial membraneless organelles for intracellular ROS scavenging.Biomater Sci. 2022 Aug 9;10(16):4588-4595. doi: 10.1039/d2bm00713d. Biomater Sci. 2022. PMID: 35792669
-
Reversible photocontrol of DNA coacervation.Methods Enzymol. 2021;646:329-351. doi: 10.1016/bs.mie.2020.06.013. Epub 2020 Jul 10. Methods Enzymol. 2021. PMID: 33453931
-
Peptide-based coacervates as biomimetic protocells.Chem Soc Rev. 2021 Mar 21;50(6):3690-3705. doi: 10.1039/d0cs00307g. Epub 2021 Feb 22. Chem Soc Rev. 2021. PMID: 33616129 Review.
-
Coacervate Droplets as Biomimetic Models for Designing Cell-Like Microreactors.Macromol Rapid Commun. 2024 Dec;45(24):e2400626. doi: 10.1002/marc.202400626. Epub 2024 Nov 26. Macromol Rapid Commun. 2024. PMID: 39588807 Free PMC article. Review.
Cited by
-
Sequestration within peptide coacervates improves the fluorescence intensity, kinetics, and limits of detection of dye-based DNA biosensors.Commun Chem. 2024 Feb 29;7(1):49. doi: 10.1038/s42004-024-01124-3. Commun Chem. 2024. PMID: 38424154 Free PMC article.
-
Constrained dynamics of DNA oligonucleotides in phase-separated droplets.Biophys J. 2024 Jun 4;123(11):1458-1466. doi: 10.1016/j.bpj.2023.12.025. Epub 2024 Jan 2. Biophys J. 2024. PMID: 38169216 Free PMC article.
-
Self-consistent Field Analysis of Segregative Aqueous Dextran-Polyethylene Glycol Solutions: (1) Bulk Phase Diagrams.J Phys Chem B. 2025 Jul 3;129(26):6632-6645. doi: 10.1021/acs.jpcb.5c01284. Epub 2025 Jun 19. J Phys Chem B. 2025. PMID: 40534413 Free PMC article.
-
Thermophilic Behavior of Heat-Dissociative Coacervate Droplets.Nano Lett. 2024 Dec 18;24(50):15964-15972. doi: 10.1021/acs.nanolett.4c03058. Epub 2024 Nov 21. Nano Lett. 2024. PMID: 39573916 Free PMC article.
-
Tuning interfacial fluidity and colloidal stability of membranized coacervate protocells.Commun Chem. 2024 Jun 3;7(1):122. doi: 10.1038/s42004-024-01193-4. Commun Chem. 2024. PMID: 38831043 Free PMC article.
References
-
- F. W. Tieback, Z. Chem. Ind. Kolloide 1911, 8, 198.
-
- H. G. Bungenberg de Jong, H. R. Kruyt, Proc. K. Ned. Akad. Wet. 1929, 32, 849.
-
- A. I. Oparin, The Origin of Life, Dover Publications, New York 1938.
-
- T. H. Kalantar, C. J. Tucker, A. S. Zalusky, T. A. Boomgaard, B. E. Wilson, M. Ladika, S. L. Jordan, W. K. Li, X. Zhang, C. G. Gosh, J. Cosmet. Sci. 2007, 58, 375.
-
- A. Madene, M. Jacquot, J. Scher, S. Desobry, Int. J. Food Sci. Technol. 2006, 41, 1.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous