MicroRNA-335-5p suppresses voltage-gated sodium channel expression and may be a target for seizure control
- PMID: 37463203
- PMCID: PMC10372546
- DOI: 10.1073/pnas.2216658120
MicroRNA-335-5p suppresses voltage-gated sodium channel expression and may be a target for seizure control
Abstract
There remains an urgent need for new therapies for treatment-resistant epilepsy. Sodium channel blockers are effective for seizure control in common forms of epilepsy, but loss of sodium channel function underlies some genetic forms of epilepsy. Approaches that provide bidirectional control of sodium channel expression are needed. MicroRNAs (miRNA) are small noncoding RNAs which negatively regulate gene expression. Here we show that genome-wide miRNA screening of hippocampal tissue from a rat epilepsy model, mice treated with the antiseizure medicine cannabidiol, and plasma from patients with treatment-resistant epilepsy, converge on a single target-miR-335-5p. Pathway analysis on predicted and validated miR-335-5p targets identified multiple voltage-gated sodium channels (VGSCs). Intracerebroventricular injection of antisense oligonucleotides against miR-335-5p resulted in upregulation of Scn1a, Scn2a, and Scn3a in the mouse brain and an increased action potential rising phase and greater excitability of hippocampal pyramidal neurons in brain slice recordings, consistent with VGSCs as functional targets of miR-335-5p. Blocking miR-335-5p also increased voltage-gated sodium currents and SCN1A, SCN2A, and SCN3A expression in human induced pluripotent stem cell-derived neurons. Inhibition of miR-335-5p increased susceptibility to tonic-clonic seizures in the pentylenetetrazol seizure model, whereas adeno-associated virus 9-mediated overexpression of miR-335-5p reduced seizure severity and improved survival. These studies suggest modulation of miR-335-5p may be a means to regulate VGSCs and affect neuronal excitability and seizures. Changes to miR-335-5p may reflect compensatory mechanisms to control excitability and could provide biomarker or therapeutic strategies for different types of treatment-resistant epilepsy.
Keywords: adeno-associated virus; antisense oligonucleotides; drug resistance; epilepsy; noncoding RNA.
Conflict of interest statement
RCSI University of Medicine and Health Sciences (D.C.H., G.M., and M.H.) reports the European Patent Application No. EP21198390.3 “Modulation of microRNA-335-5p for the treatment of sodium channelopathies.”
Figures






Comment in
-
MicroRNA 335-5p: The Sodium Channel Silencer.Epilepsy Curr. 2023 Nov 22;24(1):50-52. doi: 10.1177/15357597231212373. eCollection 2024 Jan-Feb. Epilepsy Curr. 2023. PMID: 38327537 Free PMC article.
Similar articles
-
Biological concepts in human sodium channel epilepsies and their relevance in clinical practice.Epilepsia. 2020 Mar;61(3):387-399. doi: 10.1111/epi.16438. Epub 2020 Feb 23. Epilepsia. 2020. PMID: 32090326
-
GAPDH-mediated posttranscriptional regulations of sodium channel Scn1a and Scn3a genes under seizure and ketogenic diet conditions.Neuropharmacology. 2017 Feb;113(Pt A):480-489. doi: 10.1016/j.neuropharm.2016.11.002. Epub 2016 Nov 2. Neuropharmacology. 2017. PMID: 27816501
-
SCN3A deficiency associated with increased seizure susceptibility.Neurobiol Dis. 2017 Jun;102:38-48. doi: 10.1016/j.nbd.2017.02.006. Epub 2017 Feb 22. Neurobiol Dis. 2017. PMID: 28235671 Free PMC article.
-
NaV1.1 channels and epilepsy.J Physiol. 2010 Jun 1;588(Pt 11):1849-59. doi: 10.1113/jphysiol.2010.187484. Epub 2010 Mar 1. J Physiol. 2010. PMID: 20194124 Free PMC article. Review.
-
Model systems for studying cellular mechanisms of SCN1A-related epilepsy.J Neurophysiol. 2016 Apr;115(4):1755-66. doi: 10.1152/jn.00824.2015. Epub 2016 Feb 3. J Neurophysiol. 2016. PMID: 26843603 Free PMC article. Review.
Cited by
-
Pathogenesis, diagnosis, and treatment of epilepsy: electromagnetic stimulation-mediated neuromodulation therapy and new technologies.Neural Regen Res. 2025 Apr 1;20(4):917-935. doi: 10.4103/NRR.NRR-D-23-01444. Epub 2024 Apr 3. Neural Regen Res. 2025. PMID: 38989927 Free PMC article.
-
WONOEP appraisal: Targeted therapy development for early onset epilepsies.Epilepsia. 2025 Feb;66(2):328-340. doi: 10.1111/epi.18187. Epub 2024 Nov 19. Epilepsia. 2025. PMID: 39560633 Review.
-
Role and Therapeutic Potential of miR-301b-3p in Regulating the PI3K-AKT Pathway via PIK3CB in Eosinophilic Chronic Rhinosinusitis.J Inflamm Res. 2025 Jul 30;18:10235-10251. doi: 10.2147/JIR.S521536. eCollection 2025. J Inflamm Res. 2025. PMID: 40756418 Free PMC article.
-
Differential microRNA editing may drive target pathway switching in human temporal lobe epilepsy.Brain Commun. 2024 Jan 3;6(1):fcad355. doi: 10.1093/braincomms/fcad355. eCollection 2024. Brain Commun. 2024. PMID: 38204971 Free PMC article.
-
MicroRNAs Fine-Tune Brain and Body Communication in Health and Disease : MicroRNAs in Brain-Body Communication.Adv Exp Med Biol. 2025;1477:311-337. doi: 10.1007/978-3-031-89525-8_12. Adv Exp Med Biol. 2025. PMID: 40442392 Review.
References
-
- Fisher R. S., et al. , ILAE official report: A practical clinical definition of epilepsy. Epilepsia 55, 475–482 (2014). - PubMed
-
- Brodie M. J., Sodium Channel Blockers in the Treatment of Epilepsy. CNS Drugs 31, 527–534 (2017). - PubMed
-
- Steel D., Symonds J. D., Zuberi S. M., Brunklaus A., Dravet syndrome and its mimics: Beyond SCN1A. Epilepsia 58, 1807–1816 (2017). - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Molecular Biology Databases