X-Ray Nanothermometry of Nanoparticles in Tumor-Mimicking Tissues under Photothermia
- PMID: 37463675
- PMCID: PMC11469036
- DOI: 10.1002/adhm.202301863
X-Ray Nanothermometry of Nanoparticles in Tumor-Mimicking Tissues under Photothermia
Abstract
Temperature plays a critical role in regulating body mechanisms and indicating inflammatory processes. Local temperature increments above 42 °C are shown to kill cancer cells in tumorous tissue, leading to the development of nanoparticle-mediated thermo-therapeutic strategies for fighting oncological diseases. Remarkably, these therapeutic effects can occur without macroscopic temperature rise, suggesting localized nanoparticle heating, and minimizing side effects on healthy tissues. Nanothermometry has received considerable attention as a means of developing nanothermosensing approaches to monitor the temperature at the core of nanoparticle atoms inside cells. In this study, a label-free, direct, and universal nanoscale thermometry is proposed to monitor the thermal processes of nanoparticles under photoexcitation in the tumor environment. Gold-iron oxide nanohybrids are utilized as multifunctional photothermal agents internalized in a 3D tumor model of glioblastoma that mimics the in vivo scenario. The local temperature under near-infrared photo-excitation is monitored by X-ray absorption spectroscopy (XAS) at the Au L3 -edge (11 919 eV) to obtain their temperature in cells, deepening the knowledge of nanothermal tumor treatments. This nanothermometric approach demonstrates its potential in detecting high nanothermal changes in tumor-mimicking tissues. It offers a notable advantage by enabling thermal sensing of any element, effectively transforming any material into a nanothermometer within biological environments.
Keywords: X-ray absorption spectroscopy; nanomedicines; nanothermal therapy; nanothermometry; photothermia; plasmonic nanoparticles.
© 2023 The Authors. Advanced Healthcare Materials published by Wiley-VCH GmbH.
Conflict of interest statement
The authors declare no conflict of interest.
Figures
References
-
- van den Tempel N., Horsman M. R., Kanaar R., Int. J. Hyperthermia 2016, 32, 446. - PubMed
-
- a) Rosensweig R. E., J. Magn. Magn. Mater. 2002, 252, 370;
- b) Huang H. S., Hainfeld J. F., Int. J. Nanomed. 2013, 8, 2521; - PMC - PubMed
- c) Rubia‐Rodríguez I., Santana‐Otero A., Spassov S., Tombácz E., Johansson C., De La Presa P., Teran F. J., Morales M. d. P., Veintemillas‐Verdaguer S., Thanh N. T., Materials 2021, 14, 706. - PMC - PubMed
-
- Huang X., Jain P. K., El‐Sayed I. H., El‐Sayed M. A., Las. Med. Sci. 2008, 23, 217. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
- 2018-T1/IND-1005(A.E.)/Comunidad de Madrid
- 2018-T1/IND-10360 project/Comunidad de Madrid
- 2022-5A/IND-24234 project (A. M-N.)/Comunidad de Madrid
- ASAP-CMS2022/BMD-7434project(A.E.)/Comunidad de Madrid
- NanoMagCOSTCMS2018/NMT-4321project/Comunidad de Madrid
- SEV-2016-0686/"Severo Ochoa" program for Centres of Excellence in R&D
- CEX2020-001039-S/"Severo Ochoa" program for Centres of Excellence in R&D
- PIE-20226AT024/Consejo Superior de Investigaciones Científicas
- RYC2020-029282-I(A.E.)/Ministerio de Ciencia e Innovación
- PRE2020-96246grant(R.L-M.)/Ministerio de Ciencia e Innovación
- PID2021-127033OB-C21(A.E.)/Ministerio de Ciencia e Innovación
- PID2021-126323OA-I00(A.M-N)/Ministerio de Ciencia e Innovación
- PID2019-106099RB-C43/AEI/10.13039/501100011033(J.R.)/Ministerio de Ciencia e Innovación
- SEV-2016-0686/Ministerio de Ciencia e Innovación
- CEX2020-001039-S/Ministerio de Ciencia e Innovación
LinkOut - more resources
Full Text Sources
Medical
