Exploring Giant Unilamellar Vesicle Production for Artificial Cells - Current Challenges and Future Directions
- PMID: 37464561
- DOI: 10.1002/smtd.202300416
Exploring Giant Unilamellar Vesicle Production for Artificial Cells - Current Challenges and Future Directions
Abstract
Creating an artificial cell from the bottom up is a long-standing challenge and, while significant progress has been made, the full realization of this goal remains elusive. Arguably, one of the biggest hurdles that researchers are facing now is the assembly of different modules of cell function inside a single container. Giant unilamellar vesicles (GUVs) have emerged as a suitable container with many methods available for their production. Well-studied swelling-based methods offer a wide range of lipid compositions but at the expense of limited encapsulation efficiency. Emulsion-based methods, on the other hand, excel at encapsulation but are only effective with a limited set of membrane compositions and may entrap residual additives in the lipid bilayer. Since the ultimate artificial cell will need to comply with both specific membrane and encapsulation requirements, there is still no one-method-fits-all solution for GUV formation available today. This review discusses the state of the art in different GUV production methods and their compatibility with GUV requirements and operational requirements such as reproducibility and ease of use. It concludes by identifying the most pressing issues and proposes potential avenues for future research to bring us one step closer to turning artificial cells into a reality.
Keywords: bottom-up reconstitution; lipid membranes; liposomes; synthetic biology; synthetic cells.
© 2023 The Authors. Small Methods published by Wiley-VCH GmbH.
Similar articles
-
Optimized cDICE for Efficient Reconstitution of Biological Systems in Giant Unilamellar Vesicles.ACS Synth Biol. 2021 Jul 16;10(7):1690-1702. doi: 10.1021/acssynbio.1c00068. Epub 2021 Jun 29. ACS Synth Biol. 2021. PMID: 34185516 Free PMC article.
-
Reconstitution of an RNA Virus Replicase in Artificial Giant Unilamellar Vesicles Supports Full Replication and Provides Protection for the Double-Stranded RNA Replication Intermediate.J Virol. 2020 Aug 31;94(18):e00267-20. doi: 10.1128/JVI.00267-20. Print 2020 Aug 31. J Virol. 2020. PMID: 32641477 Free PMC article.
-
Synthesizing artificial cells from giant unilamellar vesicles: state-of-the art in the development of microfluidic technology.Bioessays. 2012 Nov;34(11):992-1001. doi: 10.1002/bies.201200105. Epub 2012 Aug 24. Bioessays. 2012. PMID: 22926929 Review.
-
Encapsulation of Nucleic Acids into Giant Unilamellar Vesicles by Freeze-Thaw: a Way Protocells May Form.Orig Life Evol Biosph. 2017 Dec;47(4):499-510. doi: 10.1007/s11084-016-9527-9. Epub 2016 Nov 2. Orig Life Evol Biosph. 2017. PMID: 27807660
-
Protein Reconstitution Inside Giant Unilamellar Vesicles.Annu Rev Biophys. 2021 May 6;50:525-548. doi: 10.1146/annurev-biophys-100620-114132. Epub 2021 Mar 5. Annu Rev Biophys. 2021. PMID: 33667121 Review.
Cited by
-
Benefits and challenges of reconstituting the actin cortex.Cytoskeleton (Hoboken). 2024 Dec;81(12):843-863. doi: 10.1002/cm.21855. Epub 2024 Mar 23. Cytoskeleton (Hoboken). 2024. PMID: 38520148 Review.
-
Challenges in observing transcription-translation for bottom-up synthetic biology.QRB Discov. 2025 Jan 3;6:e5. doi: 10.1017/qrd.2024.27. eCollection 2025. QRB Discov. 2025. PMID: 39944880 Free PMC article. Review.
-
Towards electrospray-assisted production of lipid-based synthetic cell assemblies.Soft Matter. 2025 Apr 16;21(16):2977-2985. doi: 10.1039/d4sm01284d. Soft Matter. 2025. PMID: 40035737 Free PMC article.
-
Dimensions, stability, and deformability of DOPC-cholesterol giant unilamellar vesicles formed by droplet transfer.Open Res Eur. 2025 Aug 4;5:77. doi: 10.12688/openreseurope.19149.2. eCollection 2025. Open Res Eur. 2025. PMID: 40771874 Free PMC article.
-
Building a Synthetic Cell Together.Nat Commun. 2025 Aug 12;16(1):7488. doi: 10.1038/s41467-025-62778-8. Nat Commun. 2025. PMID: 40796565 Free PMC article. Review.
References
-
- H. Zwart, eLife 2019, 8, e46518.
-
- J. W. Szostak, D. P. Bartel, P. L Luisi, Nature 2001, 409, 387.
-
- O. Staufer, J. A. De Lora, E. Bailoni, A. Bazrafshan, A. S. Benk, K. Jahnke, Z. A. Manzer, L. Otrin, T. Díez Pérez, J. Sharon, J. Steinkühler, K. P. Adamala, B. Jacobson, M. Dogterom, K. Göpfrich, D. Stefanovic, S. R. Atlas, M. Grunze, M. R. Lakin, A. P. Shreve, J. P. Spatz, G. P. López, eLife 2021, 10, e73556.
-
- BaSyC-Building a Synthetic Cell. BaSyC https://www.basyc.nl/ (accessed: December 2022).
-
- P. Schwille, J. Spatz, K. Landfester, E. Bodenschatz, S. Herminghaus, V. Sourjik, T. J. Erb, P. Bastiaens, R. Lipowsky, A. Hyman, P. Dabrock, J.-C. Baret, T. Vidakovic-Koch, P. Bieling, R. Dimova, H. Mutschler, T. Robinson, T.-Y. D Tang, S. Wegner, K. Sundmacher, Angew. Chem., Int. Ed. 2018, 57, 13382.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources