Angiotensin I-converting enzyme type 2 expression is increased in pancreatic islets of type 2 diabetic donors
- PMID: 37466955
- DOI: 10.1002/dmrr.3696
Angiotensin I-converting enzyme type 2 expression is increased in pancreatic islets of type 2 diabetic donors
Abstract
Aims: Angiotensin I-converting enzyme type 2 (ACE2), a pivotal SARS-CoV-2 receptor, has been shown to be expressed in multiple cells, including human pancreatic beta-cells. A putative bidirectional relationship between SARS-CoV-2 infection and diabetes has been suggested, confirming the hypothesis that viral infection in beta-cells may lead to new-onset diabetes or worse glycometabolic control in diabetic patients. However, whether ACE2 expression levels are altered in beta-cells of diabetic patients has not yet been investigated. Here, we aimed to elucidate the in situ expression pattern of ACE2 in Type 2 diabetes (T2D) with respect to non-diabetic donors which may account for a higher susceptibility to SARS-CoV-2 infection in beta-cells.
Material and methods: Angiotensin I-converting enzyme type 2 immunofluorescence analysis using two antibodies alongside insulin staining was performed on formalin-fixed paraffin embedded pancreatic sections obtained from n = 20 T2D and n = 20 non-diabetic (ND) multiorgan donors. Intensity and colocalisation analyses were performed on a total of 1082 pancreatic islets. Macrophage detection was performed using anti-CD68 immunohistochemistry on serial sections from the same donors.
Results: Using two different antibodies, ACE2 expression was confirmed in beta-cells and in pancreas microvasculature. Angiotensin I-converting enzyme type 2 expression was increased in pancreatic islets of T2D donors in comparison to ND controls alongside with a higher colocalisation rate between ACE2 and insulin using both anti-ACE2 antibodies. CD68+ cells tended to be increased in T2D pancreata, in line with higher ACE2 expression observed in serial sections.
Conclusions: Higher ACE2 expression in T2D islets might increase their susceptibility to SARS-CoV-2 infection during COVID-19 in T2D patients, thus worsening glycometabolic outcomes and disease severity.
Keywords: ACE2; COVID-19; SARS-CoV-2; beta-cell; pancreatic islets; type 2 diabetes.
© 2023 The Authors. Diabetes/Metabolism Research and Reviews published by John Wiley & Sons Ltd.
References
REFERENCES
-
- Myers LC, Parodi SM, Escobar GJ, Liu VX. Characteristics of hospitalized adults with COVID-19 in an integrated health Care system in California. JAMA. 2020;323(21):2195-2198. https://doi.org/10.1001/jama.2020.7202
-
- Barron E, Bakhai C, Kar P, et al. Associations of type 1 and type 2 diabetes with COVID-19-related mortality in England: a whole-population study. Lancet Diabetes Endocrinol. 2020;8(10):813-822. https://doi.org/10.1016/s2213-8587(20)30272-2
-
- Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507-513. https://doi.org/10.1016/s0140-6736(20)30211-7
-
- Fadini GP, Morieri ML, Longato E, Avogaro A. Prevalence and impact of diabetes among people infected with SARS-CoV-2. J Endocrinol Invest. 2020;43(6):867-869. https://doi.org/10.1007/s40618-020-01236-2
-
- Wander PL, Lowy E, Beste LA, et al. The incidence of diabetes among 2,777,768 veterans with and without recent SARS-CoV-2 infection. Diabetes Care. 2022;45(4):782-788. https://doi.org/10.2337/dc21-1686
Publication types
MeSH terms
Substances
LinkOut - more resources
Miscellaneous