Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1986 Sep;29(9):1596-603.
doi: 10.1021/jm00159a007.

Oxidation of 4-aryl- and 4-alkyl-substituted 2,6-dimethyl-3,5-bis(alkoxycarbonyl)-1,4-dihydropyridines by human liver microsomes and immunochemical evidence for the involvement of a form of cytochrome P-450

Oxidation of 4-aryl- and 4-alkyl-substituted 2,6-dimethyl-3,5-bis(alkoxycarbonyl)-1,4-dihydropyridines by human liver microsomes and immunochemical evidence for the involvement of a form of cytochrome P-450

R H Böcker et al. J Med Chem. 1986 Sep.

Abstract

4-Substituted 2,6-dimethyl-3,5-bis(alkoxycarbonyl)-1,4-dihydropyridines are important because of their roles as calcium channel blockers. The mixed-function oxidation of 14 4-aryl- and four 4-alkyl-substituted derivatives by human liver microsomes was examined. The major product of enzymatic oxidation of all the 4-aryl compounds was the pyridine derivative containing the 4-aryl group. The 4-alkyl compounds, in contrast, formed a pyridine derivative in which a hydrogen atom was present at the 4-position and the alkyl group was lost; these compounds also inactivated cytochrome P-450 and caused the loss of nifedipine oxidase activity after enzymatic oxidation. All of these reactions were extensively inhibited by an antibody raised to purified human liver nifedipine oxidase cytochrome P-450 (P-450NF), indicating a major role for this enzyme in the oxidation of these compounds. Oxidation of the 4-alkyl compounds led not only to the loss of P-450NF but also to decreases in catalytic activities of cytochrome P-450 isozymes catalyzing other reactions (phenacetin O-deethylation and hexobarbital 3'-hydroxylation). The results indicate that P-450NF (or closely related enzyme forms) is responsible for the oxidation of these nifedipine-related compounds in human liver microsomes and that metabolism is highly dependent upon 4-substitution; with alkyl substituents, radicals are postulated to leave P-450NF to attack other proteins.

PubMed Disclaimer

Publication types

LinkOut - more resources