Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Aug 14;24(8):3689-3699.
doi: 10.1021/acs.biomac.3c00406. Epub 2023 Jul 20.

ROMP-based Glycopolymers with High Affinity for Mannose-Binding Lectins

Affiliations

ROMP-based Glycopolymers with High Affinity for Mannose-Binding Lectins

Clément Gonnot et al. Biomacromolecules. .

Abstract

Well-defined, highly reactive poly(norbornenyl azlactone)s of controlled length (number-average degree of polymerization DPn¯ = 10 to 1,000) were made by ring-opening metathesis polymerization (ROMP) of pure exo-norbornenyl azlactone. These were converted into glycopolymers using a facile postpolymerization modification (PPM) strategy based on click aminolysis of azlactone side groups by amino-functionalized glycosides. Pegylated mannoside, heptyl-mannoside, and pegylated glucoside were used in the PPM. Binding inhibition of the resulting glycopolymers was evaluated against a lectin panel (Bc2L-A, FimH, langerin, DC-SIGN, ConA). Inhibition profiles depended on the sugars and the degrees of polymerization. Glycopolymers from pegylated-mannoside-functionalized polynorbornene, with DPn¯ = 100, showed strong binding inhibition, with subnanomolar range inhibitory concentrations (IC50s). Polymers surpassed the inhibitory potential of their monovalent analogues by four to five orders of magnitude thanks to a multivalent (synergistic) effect. Sugar-functionalized poly(norbornenyl azlactone)s are therefore promising tools to study multivalent carbohydrate-lectin interactions and for applications against lectin-promoted bacterial/viral binding to host cells.

PubMed Disclaimer

Publication types

LinkOut - more resources