Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2023 Sep:232:107879.
doi: 10.1016/j.clineuro.2023.107879. Epub 2023 Jul 6.

Deep learning in neuroimaging of epilepsy

Affiliations
Review

Deep learning in neuroimaging of epilepsy

Karla Batista García-Ramó et al. Clin Neurol Neurosurg. 2023 Sep.

Abstract

In recent years, artificial intelligence, particularly deep learning (DL), has demonstrated utility in diverse areas of medicine. DL uses neural networks to automatically learn features from the raw data while this is not possible with conventional machine learning. It is helpful for the assessment of patients with epilepsy and whilst most published studies have been aimed at the automatic detection and prediction of seizures from electroencephalographic records, there is a growing number of investigations that use neuroimaging modalities (structural and functional magnetic resonance imaging, diffusion-weighted imaging and positron emission tomography) as input data. We review the application of DL to neuroimaging (sMRI, fMRI, DWI and PET) of focal epilepsy, specifically presurgical evaluation of drug-refractory epilepsy. First, a brief theoretical overview of artificial neural networks and deep learning is presented. Next, we review applications of deep learning to neuroimaging of epilepsy: diagnosis and lateralization, automated detection of lesion, presurgical evaluation and prediction of postsurgical outcome. Finally, the limitations, challenges and possible future directions in the application of these methods in the study of epilepsies are discussed. This approach could become an essential tool in clinical practice, particularly in the evaluation of images considered negative by visual inspection, in individualized treatments, and in the approach to epilepsy as a network disorder. However, greater multicenter collaboration is required to achieve the collection of sufficient data with the required quality together with the open access availability of the developed codes and tools.

Keywords: Deep learning and artificial neural networks; Epilepsy; Neuroimaging.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare no conflict of interest.