Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Meta-Analysis
. 2023 Sep:177:105151.
doi: 10.1016/j.ijmedinf.2023.105151. Epub 2023 Jul 11.

Prediction of prognosis in COVID-19 patients using machine learning: A systematic review and meta-analysis

Affiliations
Meta-Analysis

Prediction of prognosis in COVID-19 patients using machine learning: A systematic review and meta-analysis

Ruiyao Chen et al. Int J Med Inform. 2023 Sep.

Abstract

Background: Accurate prediction of prognostic outcomes in patients with COVID-19 could facilitate clinical decision-making and medical resource allocation. However, little is known about the ability of machine learning (ML) to predict prognosis in COVID-19 patients.

Objective: This study aimed to systematically examine the prognostic value of ML in patients with COVID-19.

Methods: A systematic search was conducted in PubMed, Web of Science, Embase, Cochrane Library, and IEEE Xplore up to December 15, 2021. Studies predicting the prognostic outcomes of COVID-19 patients using ML were eligible for inclusion. Risk of bias was evaluated by a tailored checklist based on Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2). Pooled sensitivity, specificity, and area under the receiver operating curve (AUC) were calculated to evaluate model performance.

Results: A total of 33 studies that described 35 models were eligible for inclusion, with 27 models presenting mortality, four intensive care unit (ICU) admission, and four use of ventilation. For predicting mortality, ML gave a pooled sensitivity of 0.86 (95% CI, 0.79-0.90), a specificity of 0.87 (95% CI, 0.80-0.92), and an AUC of 0.93 (95% CI, 0.90-0.95). For the prediction of ICU admission, ML had a sensitivity of 0.86 (95% CI, 0.78-0.92), a specificity of 0.81 (95% CI, 0.66-0.91), and an AUC of 0.91 (95% CI, 0.88-0.93). For the prediction of ventilation, ML had a sensitivity of 0.81 (95% CI, 0.68-0.90), a specificity of 0.78 (95% CI, 0.66-0.87), and an AUC of 0.87 (95% CI, 0.83-0.89). Meta-regression analyses indicated that algorithm, population, study design, and source of dataset influenced the pooled estimate.

Conclusion: This meta-analysis demonstrated the satisfactory performance of ML in predicting prognostic outcomes in patients with COVID-19, suggesting the potential value of ML to support clinical decision-making. However, improvements to methodology and validation are still necessary before its application in routine clinical practice.

Keywords: COVID-19; Machine learning; Meta-analysis; Prediction; Prognostic outcome.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Publication types

LinkOut - more resources