Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Dec:97:102789.
doi: 10.1016/j.parint.2023.102789. Epub 2023 Jul 19.

Antiplasmodial and interferon-gamma-modulating activities of the aqueous extract of stone breaker (Phyllanthus niruri Linn.) in malaria infection

Affiliations

Antiplasmodial and interferon-gamma-modulating activities of the aqueous extract of stone breaker (Phyllanthus niruri Linn.) in malaria infection

Temitope Olawale Jeje et al. Parasitol Int. 2023 Dec.

Abstract

Plasmodium falciparum parasites are the primary cause of malaria across Africa. The problem of drug resistance to malaria is ever growing and novel therapeutic strategies need to be developed, particularly those targeting the parasite and also the host or host-pathogen interaction. Previous studies have shown that the development of cerebral malaria (CM) is related to dysregulation of the immune system in a murine malaria model of experimental cerebral malaria. It involves a complex interaction of events and interferon-gamma seems to be the unifying factor. Therefore, the antiplasmodial activity targeting the parasite and immunomodulatory strategies that reduce overall host inflammation, with IFN-γ in focus, could delay CM onset and prove beneficial in malaria infection therapy. Phyllanthus niruri is used to treat fever and other symptoms of malaria in Nigeria. Its modes of action as an anti-malarial remedy have not been exhaustively investigated. This study therefore examined the aqueous extract of P. niruri (PE) for its antiplasmodial activity in vitro using the Plasmodium falciparum HB3 strain. Furthermore, in vivo murine malaria model using the Plasmodium berghei ANKA strain was used to investigate its anti-malarial effects. We showed that PE has multiple anti-malarial effects, including anti-parasitic and host immunomodulatory activities. Co-culture of P. falciparum with PE and some of its phytoconstituents drastically reduced parasite number. PE also decreased parasitemia, and increased the survival of infected mice. We also observed that the integrity of the blood-brain barrier was maintained in the PE-treated mice. The results confirmed that PE showed moderate antiplasmodial activity. In vivo murine malaria model using P. berghei ANKA for experimental cerebral malaria revealed that PE suppressed parasite growth, and modulate the production of interferon-gamma. The findings demonstrate that PE affects malaria progression, targeting parasites and host cells.

Keywords: Antimalarial; Apoptosis; Gamma-interferon; Invasion; NF-κB; Phyllanthus niruri; Plasmodium.

PubMed Disclaimer

LinkOut - more resources