Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Aug 2;34(8):1789-1797.
doi: 10.1021/jasms.3c00197. Epub 2023 Jul 21.

Contribution of LDI and MALDI for the Characterization of a Lignocellulosic-Based Pyrolysis Bio-Oil

Affiliations

Contribution of LDI and MALDI for the Characterization of a Lignocellulosic-Based Pyrolysis Bio-Oil

Charlotte Mase et al. J Am Soc Mass Spectrom. .

Abstract

In recent years, various alternatives to fossil fuels have been developed. One of them involves the production of bio-oils from lignocellulosic-based biomass through pyrolysis. However, bio-oils present numerous heteroatoms and, in particular, oxygen atoms that need to be removed by an upgrading process. To optimize these processes, it is necessary to have good knowledge of the composition of the bio-oils at the molecular level. This work aims to establish the usefulness of laser desorption ionization (LDI) and matrix-assisted laser desorption/ionization (MALDI) techniques on lignocellulosic biomass-based bio-oils. Using a Fourier transform ion cyclotron mass spectrometer (FTICR MS), we showed that MALDI gives more information than LDI. The selectivity of a series of MALDI matrices was investigated, showing that some matrices are selective toward compound families and others ionize a wider range of compounds. In this study, nine proton-transfer matrices and three electron-transfer matrices were used and compared to results obtained in LDI. Dithranol, acetosyringone, and graphene oxide were the three promising matrices selected from all matrices, giving an overall characterization of oxygenated classes in a bio-oil. They allowed the ionization of many more species covering a wide range of polarity, aromaticity, and mass with a homogeneous relative intensity for all molecular classes such as lignin-derivative species, sugars, and lipid-derivative species.

Keywords: FTICR MS; LDI; MALDI; bio-oils; wood pyrolysis.

PubMed Disclaimer

LinkOut - more resources