Dense Disordered Jammed Packings of Hard Spherocylinders with a Low Aspect Ratio: A Characterization of Their Structure
- PMID: 37478840
- PMCID: PMC10405222
- DOI: 10.1021/acs.jpcb.3c03195
Dense Disordered Jammed Packings of Hard Spherocylinders with a Low Aspect Ratio: A Characterization of Their Structure
Abstract
This work numerically investigates dense disordered (maximally random) jammed packings of hard spherocylinders of cylinder length L and diameter D by focusing on L/D ∈ [0,2]. It is within this interval that one expects that the packing fraction of these dense disordered jammed packings ϕMRJ hsc attains a maximum. This work confirms the form of the graph ϕMRJ hsc versus L/D: here, comparably to certain previous investigations, it is found that the maximal ϕMRJ hsc = 0.721 ± 0.001 occurs at L/D = 0.45 ± 0.05. Furthermore, this work meticulously characterizes the structure of these dense disordered jammed packings via the special pair-correlation function of the interparticle distance scaled by the contact distance and the ensuing analysis of the statistics of the hard spherocylinders in contact: here, distinctly from all previous investigations, it is found that the dense disordered jammed packings of hard spherocylinders with 0.45 ≲ L/D ≤ 2 are isostatic.
Conflict of interest statement
The authors declare no competing financial interest.
Figures









Similar articles
-
Dense disordered jammed packings of hard very elongate particles: A new derivation of the random contact equation.J Chem Phys. 2022 Oct 7;157(13):134903. doi: 10.1063/5.0110120. J Chem Phys. 2022. PMID: 36208998
-
Existence of isostatic, maximally random jammed monodisperse hard-disk packings.Proc Natl Acad Sci U S A. 2014 Dec 30;111(52):18436-41. doi: 10.1073/pnas.1408371112. Epub 2014 Dec 15. Proc Natl Acad Sci U S A. 2014. PMID: 25512529 Free PMC article.
-
Pair correlation function characteristics of nearly jammed disordered and ordered hard-sphere packings.Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Jan;71(1 Pt 1):011105. doi: 10.1103/PhysRevE.71.011105. Epub 2005 Jan 12. Phys Rev E Stat Nonlin Soft Matter Phys. 2005. PMID: 15697578
-
Robust algorithm to generate a diverse class of dense disordered and ordered sphere packings via linear programming.Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Dec;82(6 Pt 1):061302. doi: 10.1103/PhysRevE.82.061302. Epub 2010 Dec 10. Phys Rev E Stat Nonlin Soft Matter Phys. 2010. PMID: 21230667
-
Hyperuniformity scaling of maximally random jammed packings of two-dimensional binary disks.Phys Rev E. 2024 Dec;110(6-1):064605. doi: 10.1103/PhysRevE.110.064605. Phys Rev E. 2024. PMID: 39916124
References
-
- Torquato S.; Stillinger F. H. Jammed Hard-Particle Packings: from Kepler to Bernal and Beyond. Rev. Mod. Phys. 2010, 82, 2633–2672. 10.1103/RevModPhys.82.2633. - DOI
-
- Kepler J.Strena seu De Nive Sextangula; Godefridum Tampach: Francofurtum ad Moenum, 1611.
-
- Conway J. H.; Sloane N. J. A.. Sphere Packings, Lattices and Groups; Springer-Verlag: New York, 2003.
-
- Bernal J. D. The Structure of Liquids. Proc. R. Soc. Lond. A 1964, 280, 299–322. 10.1098/rspa.1964.0147. - DOI
LinkOut - more resources
Full Text Sources
Research Materials