Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Sep:166:22-37.
doi: 10.1016/j.neunet.2023.06.039. Epub 2023 Jul 6.

A look into feedback neural computation upon collision selectivity

Affiliations
Free article

A look into feedback neural computation upon collision selectivity

Zefang Chang et al. Neural Netw. 2023 Sep.
Free article

Abstract

Physiological studies have shown that a group of locust's lobula giant movement detectors (LGMDs) has a diversity of collision selectivity to approaching objects, relatively darker or brighter than their backgrounds in cluttered environments. Such diversity of collision selectivity can serve locusts to escape from attack by natural enemies, and migrate in swarm free of collision. For computational studies, endeavours have been made to realize the diverse selectivity which, however, is still one of the most challenging tasks especially in complex and dynamic real world scenarios. The existing models are mainly formulated as multi-layered neural networks with merely feed-forward information processing, and do not take into account the effect of re-entrant signals in feedback loop, which is an essential regulatory loop for motion perception, yet never been explored in looming perception. In this paper, we inaugurate feedback neural computation for constructing a new LGMD-based model, named F-LGMD to look into the efficacy upon implementing different collision selectivity. Accordingly, the proposed neural network model features both feed-forward processing and feedback loop. The feedback control propagates output signals of parallel ON/OFF channels back into their starting neurons, thus makes part of the feed-forward neural network, i.e. the ON/OFF channels and the feedback loop form an iterative cycle system. Moreover, the feedback control is instantaneous, which leads to the existence of a fixed point whereby the fixed point theorem is applied to rigorously derive valid range of feedback coefficients. To verify the effectiveness of the proposed method, we conduct systematic experiments covering synthetic and natural collision datasets, and also online robotic tests. The experimental results show that the F-LGMD, with a unified network, can fulfil the diverse collision selectivity revealed in physiology, which not only reduces considerably the handcrafted parameters compared to previous studies, but also offers a both efficient and robust scheme for collision perception through feedback neural computation.

Keywords: Bio-inspired; Collision selectivity; Feedback neural computation; LGMD; ON/OFF channels.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest We declare that we have no known competing financial interest or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

Cited by

LinkOut - more resources