Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Jul 18;7(7):CD013660.
doi: 10.1002/14651858.CD013660.pub2.

Continuous positive airway pressure (CPAP) for apnoea of prematurity

Affiliations

Continuous positive airway pressure (CPAP) for apnoea of prematurity

Jacqueline J Ho et al. Cochrane Database Syst Rev. .

Abstract

Background: Apnoea of prematurity (AoP) is defined as a pause in breathing for 20 seconds or longer, or for less than 20 seconds when accompanied by bradycardia and hypoxaemia, in a preterm infant. An association between the severity of apnoea and neurodevelopmental delay has been reported. Continuous positive airway pressure (CPAP) is a form of non-invasive ventilatory assistance that has been shown to be relatively safe and effective in preventing and treating respiratory distress among preterm infants. It is less clear whether CPAP treatment is safe and effective in the prevention and treatment of AoP.

Objectives: 1. To assess the effects of CPAP on AoP in preterm infants (this may be compared to supportive care or mechanical ventilation). 2. To assess the effects of different CPAP delivery systems on AoP in preterm infants.

Search methods: Searches were conducted in September 2022 in the following databases: Cochrane Library, MEDLINE, Embase, and CINAHL. We also searched clinical trial registries and the reference lists of studies selected for inclusion.

Selection criteria: We included all randomised and quasi-randomised controlled trials (RCTs) in which researchers determined that CPAP was necessary for AoP in preterm infants (born before 37 weeks). Cross-over studies were also included, provided sufficient data were available for analysis.

Data collection and analysis: We used the standard methods of Cochrane and Cochrane Neonatal, including independent assessment of risk of bias and extraction of data by at least two review authors. Discrepancies were resolved by involvement of a third author. We used the GRADE approach to assess the certainty of evidence for the following outcomes: 1) failed CPAP; 2) apnoea; 3) adverse effects of CPAP.

Main results: We included four single-centre trials conducted in Malaysia, Spain, Germany, and North America, involving 138 infants with a mean/median gestation of 26 to 28 weeks. Two studies were parallel-group RCTs and two were cross-over trials. None of the studies compared CPAP with supportive care. All trials compared one form of CPAP with another. Two compared a variable flow device with ventilator CPAP, one compared two different variable flow devices, and one compared a variable flow device with bubble CPAP. Interventions were administered for periods ranging between six and 48 hours, with pressures between 4 and 6 cm H2O. We assessed all trials as having a high risk of bias for blinding of participants and personnel, and two studies for blinding of outcome assessors. We found a high risk of a carry-over effect in two studies where the washout period was not adequately described, and a high risk of bias in a study that appeared to use an analysis method not generally accepted for cross-over studies. Comparison 1. CPAP and supportive care compared to supportive care alone We did not identify any study for inclusion in this comparison. Comparison 2. CPAP delivered by different types of devices 2a. Variable flow compared to ventilator CPAP Two studies were included in this comparison. We are very uncertain whether there is any difference in the incidence of failed CPAP, defined as the need for mechanical ventilation (risk ratio (RR) 0.16, 95% confidence interval (CI) 0.01 to 2.90; 1 study, 26 participants; very low-certainty). We are very uncertain whether there is any difference in the frequency of apnoea events (mean difference (MD) per four-hour interval -0.10, 95% CI -1.30 to 1.10; 1 study, 26 participants; very low-certainty). We are uncertain whether there is any difference in adverse events. Neurodevelopmental outcomes were not reported. 2b. Variable flow compared to bubble CPAP We included one study in this comparison, but it did not report our pre-specified outcomes. 2c. Infant Flow variable flow CPAP compared to Medijet variable flow CPAP We are very uncertain whether there is any difference in the incidence of failed CPAP (RR 2.62, 95% CI 0.91 to 7.53; 1 study, 80 participants; very low-certainty). The frequency of apnoea was not reported, and we do not know whether there is any difference in adverse events. Neurodevelopmental outcomes were not reported. Comparison 3. CPAP compared to mechanical ventilation We did not identify any studies for inclusion in this comparison.

Authors' conclusions: Due to the limited available evidence, we are very uncertain whether any CPAP device is more effective than other forms of supportive care, other CPAP devices, or mechanical ventilation for the prevention and treatment of AoP. The devices used in these studies included two types of variable flow CPAP device: bubble CPAP and ventilator CPAP. For each comparison, data were only available from a single study. There are theoretical reasons why these devices might have different effects on AoP, therefore further trials are indicated.

پیشینه: آپنه مرتبط با نارس بودن (apnoea of prematurity; AoP) به صورت وقفه در تنفس به مدت 20 ثانیه یا بیشتر، یا کمتر از 20 ثانیه در صورت همراه شدن با برادی‌کاردی و هیپوکسمی در نوزاد نارس تعریف می‌شود. ارتباط میان شدت آپنه و تاخیر در تکامل سیستم عصبی گزارش شده است. فشار مثبت مداوم راه هوایی (continuous positive airway pressure; CPAP) نوعی کمک ونتیلاتوری غیر تهاجمی است که نشان داده شده در پیشگیری و درمان دیسترس تنفسی در نوزادان نارس، نسبتا بی‌خطر و موثر است. مشخص نیست درمان CPAP در پیشگیری و درمان AoP بی‌خطر و موثر است یا خیر. اهداف: 1. ارزیابی تاثیرات CPAP بر AoP در نوزادان نارس (این روش ممکن است با مراقبت‌های حمایتی یا ونتیلاسیون مکانیکی مقایسه شود). 2. ارزیابی تاثیرات استفاده از سیستم‌های مختلف ارائه CPAP بر AoP در نوزادان نارس. روش‌های جست‌وجو: جست‌وجوها در سپتامبر 2022 در بانک‌های اطلاعاتی زیر صورت گرفتند: کتابخانه کاکرین؛ MEDLINE؛ Embase و CINAHL. هم‌چنین پایگاه‌های ثبت کارآزمایی بالینی و فهرست منابع مطالعات منتخب را برای گنجاندن در مرور جست‌وجو کردیم. معیارهای انتخاب: همه کارآزمایی‌های تصادفی‌سازی و شبه‌‐تصادفی‌سازی و کنترل شده‌ای (randomised controlled trials; RCTs) را وارد کردیم که در آنها پژوهشگران تشخیص دادند استفاده از CPAP برای AoP در نوزادان نارس (متولد شده پیش از 37 هفته) ضروری است. مطالعات متقاطع (cross‐over) نیز گنجانده شدند، مشروط بر اینکه داده‌های کافی را برای آنالیز در دسترس قرار دادند. گردآوری و تجزیه‌وتحلیل داده‌ها: از روش‌های استاندارد کاکرین و گروه نوزادان در کاکرین، شامل ارزیابی مستقل خطر سوگیری (bias) و استخراج داده‌ها توسط دو نویسنده مرور استفاده کردیم. اختلاف‌نظرات با مشارکت نویسنده سوم حل‌وفصل شدند. از رویکرد درجه‌بندی توصیه، ارزیابی، توسعه و ارزشیابی (Grading of Recommendations Assessment, Development and Evaluation; GRADE) جهت ارزیابی قطعیت شواهد برای پیامدهای زیر استفاده کردیم: 1) CPAP ناموفق؛ 2) آپنه؛ 3) عوارض جانبی CPAP. نتایج اصلی: چهار کارآزمایی تک مرکزی را که در مالزی، اسپانیا، آلمان و آمریکای شمالی انجام شدند، شامل 138 نوزاد با میانگین (mean)/ میانه (median) سن بارداری 26 تا 28 هفته وارد کردیم. دو مطالعه، RCTهای گروه موازی (parallel‐group) و دو مطالعه کارآزمایی‏‌های متقاطع (cross‐over) بودند. هیچ یک از مطالعات CPAP را با مراقبت‌های حمایتی مقایسه نکردند. همه کارآزمایی‌ها یک شکل را از CPAP با دیگری مقایسه کردند. دو مورد یک دستگاه جریان متغیر را با ونتیلاتور CPAP مقایسه کردند، یک مورد دو دستگاه مختلف جریان متغیر را مقایسه کرد، و یک مورد یک دستگاه جریان متغیر را با CPAP حباب‌دار (bubble CPAP) مقایسه کرد. مداخلات برای دوره‌های میان شش و 48 ساعت، با فشار میان 4 و 6 سانتی‌متر H 2 O اعمال شدند. همه کارآزمایی‌ها را دارای خطر بالای سوگیری (bias) برای کورسازی (blinding) شرکت‌کنندگان و پرسنل و دو مطالعه را برای کورسازی (blinding) ارزیابان پیامد ارزیابی کردیم. در دو مطالعه که دوره پاک‌شدگی (washout period) به اندازه کافی توصیف نشد، خطر بالای تاثیر انتقال (carry‐over effect) را یافتیم و در مطالعه‌ای که به نظر می‌رسید از روش تحلیلی استفاده ‌کردند که به‌طور کلی برای مطالعات متقاطع (cross‐over) پذیرفته نیست، خطر بالای سوگیری (bias) را مشاهده کردیم. مقایسه 1. CPAP و مراقبت‌های حمایتی در مقایسه با مراقبت‌های حمایتی به تنهایی هیچ مطالعه‌ای را برای گنجاندن در این مقایسه شناسایی نکردیم. مقایسه 2. CPAP ارائه شده با انواع دستگاه‌های مختلف 2a. جریان متغیر در مقایسه با CPAP ونتیلاتور دو مطالعه در این مقایسه گنجانده شدند. مشخص نیست تفاوتی در بروز CPAP ناموفق، که به عنوان نیاز به ونتیلاسیون مکانیکی تعریف شده، وجود دارد یا خیر (خطر نسبی (RR): 0.16؛ 95% فاصله اطمینان (CI): 0.01 تا 2.90؛ 1 مطالعه، 26 شرکت‌کننده، قطعیت بسیار پائین). در رابطه با اینکه تفاوتی در فراوانی وقایع آپنه وجود دارد یا خیر، بسیار نامطمئن هستیم (تفاوت میانگین (MD) در فاصله هر چهار ساعت: 0.10‐؛ 95% CI؛ 1.30‐ تا 1.10؛ 1 مطالعه، 26 شرکت‌کننده، قطعیت بسیار پائین). ما مطمئن نیستیم که در میزان بروز عوارض جانبی، تفاوتی وجود دارد یا خیر. پیامد‌های تکامل سیستم عصبی گزارش نشدند. 2b. جریان متغیر در مقایسه با CPAP حباب‌دار یک مطالعه را در این مقایسه گنجاندیم، اما پیامدهای از پیش مشخص شده را گزارش نکرد. 2c. CPAP جریان متغیر Infant Flow در مقایسه با CPAP جریان متغیر مدیجت (Medijet) در مورد اینکه تفاوتی در بروز CPAP ناموفق وجود دارد یا خیر، بسیار نامطمئن هستیم (RR: 2.62؛ 95% CI؛ 0.91 تا 7.53؛ 1 مطالعه، 80 شرکت‌کننده؛ قطعیت بسیار پائین). فراوانی آپنه گزارش نشد، و نمی‌دانیم که تفاوتی در میزان عوارض جانبی وجود دارد یا خیر. پیامد‌های تکامل سیستم عصبی گزارش نشدند. مقایسه 3. CPAP در مقایسه با ونتیلاسیون مکانیکی هیچ مطالعه‌ای را برای گنجاندن در این مقایسه شناسایی نکردیم. نتیجه‌گیری‌های نویسندگان: با توجه به شواهد محدود موجود، در رابطه با اینکه هر نوعی از دستگاه CPAP نسبت به دیگر اشکال مراقبت‌های حمایتی، دیگر دستگاه‌های CPAP یا ونتیلاسیون مکانیکی برای پیشگیری و درمان AoP موثرتر است یا خیر، بسیار نامطمئن هستیم. دستگاه‌های مورد استفاده در این مطالعات شامل دو نوع دستگاه CPAP جریان متغیر بودن: CPAP حباب‌دار و CPAP ونتیلاتور. برای هر مقایسه، داده‌های فقط یک مطالعه واحد در دسترس بودند. دلایل نظری وجود دارد که نشان می‌دهد چرا این دستگاه‌ها ممکن است تاثیرات متفاوتی بر AoP داشته باشند، بنابراین انجام کارآزمایی‌های بیشتری لازم است.

Trial registration: ClinicalTrials.gov NCT00187434.

PubMed Disclaimer

Conflict of interest statement

JJH is an editor with Cochrane Neonatal. However, she had no involvement in the editorial processing of this review. She was also involved as a thesis supervisor for one of the included studies (Chua 2005).

PS has no conflict of interest to declare.

IZG has no conflict of interest to declare.

JJL has no conflict of interest to declare.

EL has no conflict of interest to declare.

JWL has no conflict of interest to declare.

Figures

1
1
Study flow diagram
2
2
3
3
1.1
1.1. Analysis
Comparison 1: Variable flow versus conventional ventilator CPAP, Outcome 1: Failed CPAP
1.2
1.2. Analysis
Comparison 1: Variable flow versus conventional ventilator CPAP, Outcome 2: Apnoea events
1.3
1.3. Analysis
Comparison 1: Variable flow versus conventional ventilator CPAP, Outcome 3: Bronchopulmonary dysplasia at 36 weeks
1.4
1.4. Analysis
Comparison 1: Variable flow versus conventional ventilator CPAP, Outcome 4: Mortality to discharge
1.5
1.5. Analysis
Comparison 1: Variable flow versus conventional ventilator CPAP, Outcome 5: Gastrointestinal complications
2.1
2.1. Analysis
Comparison 2: Infant Flow variable flow CPAP versus Medijet variable flow CPAP, Outcome 1: Failed CPAP

Update of

References

References to studies included in this review

Chua 2005 {unpublished data only}
    1. Chua BS. A randomised controlled trial comparing the infant flow driver with ventilator nasal continuous positive airway pressure in preterm babies with apnoea of prematurity. Unpublished thesis, National University Malaysia 2005.
Gutierrez 2003 {published data only}
    1. Gutierrrez LA, Saenz GP, Izquierdo MI, Fernandez GC, Gimeno NA, Gormaz MM, et al. Nasal continuous positive airway pressure in preterm infants: comparison of two low-resistance models [Presion positiva continua en la vi­a aerea por via nasal en el recien nacido prematuro: estudio comparativo de dos modelos de baja resistencia]. Anales de Pediatria 2003;58(4):350-6. [DOI: 10.1016/s1695-4033(03)78069-2] [PMID: ] - DOI - PubMed
Pantalitschka 2009 {published data only}
    1. Pantalitschka T, Sievers J, Urschitz MS, Herberts T, Reher C, Poets CF. Randomised crossover trial of four nasal respiratory support systems for apnoea of prematurity in very low birthweight infants. Archives of Disease in Childhood. Fetal and Neonatal Edition 2009;94(4):F245-8. [DOI: 10.1136/adc.2008.148981] [PMID: ] - DOI - PubMed
Telenko 1999 {published and unpublished data}
    1. Telenko T, Peliowski A, Hudson-Mason A. Continuous positive airway pressure (CPAP) in the treatment of apnea of prematurity: a comparison of two CPAP delivery systems. In: The American Pediatric Society and the Society for Pediatric Research 1999. Vol. 45. 01 April 1999:Abstract 228A. [DOI: 10.1203/00006450-199904020-01358] - DOI

References to studies excluded from this review

Campbell 2006 {published data only}
    1. Campbell DM, Shah PS, Shah V, Kelly EN. Nasal continuous positive airway pressure from high flow cannula versus infant flow for preterm infants. Journal of Perinatology 2006;26(9):546-9. [PMID: ] - PubMed
Claassen 2019 {published data only}
    1. Claassen CC, Hillman NH, Brown K, Williams HL, Strand ML. Comparison of bubble CPAP devices using RAM cannula for extubation failure in very low birth weight infants: randomized and cohort studies. Neonatology 2019;115(1):28-35. [PMID: ] - PubMed
Davis 1998 {published data only}
    1. Davis P, Jankov R, Doyle L, Henschke P. Randomised, controlled trial of nasal continuous positive airway pressure in the extubation of infants weighing 600 to 1250 g. Archives of disease in childhood. Fetal and neonatal edition 1998;79(1):F54-7. [PMID: ] - PMC - PubMed
Davis 2001a {published data only}
    1. Davis P, Davies M, Faber B. A randomised controlled trial of two methods of delivering nasal continuous positive airway pressure after extubation to infants weighing less than 1000 g: binasal (Hudson) versus single nasal prongs. Archives of Disease in Childhood. Fetal and Neonatal Edition 2001;85(2):F82-5. [PMID: ] - PMC - PubMed
Gross 2020 {published data only}
    1. Gross M, Poets A, Steinfeldt R, Urschitz MS, Bockmann K, Haase B, et al. Randomized longitudinal study comparing three nasal respiratory support modes to prevent intermittent hypoxia in very preterm infants. Children 2020;7(10):168. [PMID: ] - PMC - PubMed
Heiring 2015 {published data only}
    1. Heiring C, Steensberg J, Bjerager M, Greisen G. A randomized trial of low-flow oxygen versus nasal continuous positive airway pressure in preterm infants. Neonatology 2015;108(4):259-65. [PMID: ] - PubMed
Ishihara 2016 {published data only}
    1. Ishihara C, Ibara S, Ohsone Y, Kato E, Tokuhisa T, Yamamoto Y, et al. Effects of infant flow Bi-NCPAP on apnea of prematurity. Pediatrics International 2016;58(6):456-60. [PMID: ] - PubMed
Kattwinkel 1975 {published data only}
    1. Kattwinkel J, Nearman HS, Fanaroff AA, Katona PG, Klaus MH. Apnea of prematurity. Comparative therapeutic effects of cutaneous stimulation and nasal continuous positive airway pressure. Journal of Pediatrics 1975;86(4):588-92. [PMID: ] - PubMed
NCT00187434 {unpublished data only}
    1. NCT00187434. Comparison of two methods of continuous positive airway pressure (CPAP) to support successful extubation of infants of birth weights ≤ 1500 grams (C2CPAP). clinicaltrials.gov/ct2/show/NCT00187434 (first received 16 September 2005). [CENTRAL: CN-01497470] [CLINICALTRIALS.GOV: NCT00187434]
Yu 2016 {published data only}
    1. Yu M, Huang JH, Zhu R, Zhang XZ, Wu WY, Wen XH. Effect of caffeine citrate on early pulmonary function in preterm infants with apnea. Zhongguo Dang Dai Er Ke Za Zhi [Chinese Journal of Contemporary Pediatrics] 2016;18(3):206-10. [PMID: ] - PMC - PubMed
Zaharie 2008 {published data only}
    1. Zaharie G, Ion DA, Schmidt N, Popa M, Kudor-Szabadi L, Zaharie T. Prophylactic CPAP versus therapeutic CPAP in preterm newborns of 28-32 gestational weeks [CPAP precoce versus CPAP terapeutic la prematurii de 28-32 săptămâni de gestaţie]. Pneumologia (Bucharest, Romania) 2008;57(1):34-7. [PMID: ] - PubMed

References to studies awaiting assessment

Pantalitskcha 2006 {published data only (unpublished sought but not used)}
    1. Pantalitschka T, Sievers J, Arand J, Baden W, Poets C F. A comparison of different nasal positive pressure ventilation systems for the treatment of apnea of prematurity. European Respiratory Journal 2006;23 Suppl 50:362s [2172].

Additional references

Abdel‐Hady 1998
    1. Abdel-Hady H, Mohareb S, Khashaba M, Abu-Alkhair M, Greisen G. Randomized controlled trial of discontinuation of nasal-CPAP in stable preterm infants breathing room air. Acta Paediatrica 1998;87(1):82-7. [PMID: ] - PubMed
Ammari 2005
    1. Ammari A, Mandhir S, Milisavljevic V, Sahni R, Bateman S, Sanocka U, et al. Variables associated with the early failure of nasal CPAP in very low birth weight infants. Journal of Pediatrics 2005;147(3):341-7. [DOI: 10.1016/j.jpeds.2005.04.062] [PMID: ] - DOI - PubMed
Bamat 2021
    1. Bamat N, Fierro J, Mukerji A, Wright CJ, Millar D, Kirpalani H. Nasal continuous positive airway pressure levels for the prevention of morbidity and mortality in preterm infants. Cochrane Database of Systematic Reviews 2021, Issue 11. Art. No: CD012778. [DOI: 10.1002/14651858.CD012778.pub2] - DOI - PMC - PubMed
Courtney, 2007
    1. Courtney SE, Barrington KJ. Continuous positive airway pressure and noninvasive ventilation. Clinical Perinatalogy 2007;34:73-92. - PubMed
Davis 2001b
    1. Davis PG, Henderson-Smart DJ. Extubation from low-rate intermittent positive airways pressure versus extubation after a trial of endotracheal continuous positive airways pressure in intubated preterm infants. Cochrane Database of Systematic Reviews 2001, Issue 4. Art. No: CD001078. [DOI: 10.1002/14651858.CD001078] - DOI - PubMed
Davis 2003
    1. Davis PG, Henderson-Smart DJ. Nasal continuous positive airway pressure immediately after extubation for preventing morbidity in preterm infants. Cochrane Database of Systematic Reviews 2003, Issue 2. Art. No: CD000143. [DOI: 10.1002/14651858.CD000143] - DOI - PubMed
De Paoli 2008
    1. De Paoli AG, Davis PG, Faber B, Morley CJ. Devices and pressure sources for administration of nasal continuous positive airway pressure (NCPAP) in preterm neonates. Cochrane Database of Systematic Reviews 2008, Issue 1. Art. No: CD002977. [DOI: 10.1002/14651858.CD002977.pub2] - DOI - PMC - PubMed
Eichenwald 2016
    1. Eichenwald EC and AAP Committee on Fetus and Newborn. Apnea of prematurity. Pediatrics 2016;137(1):e20153757. [DOI: 10.1542/peds.2015-3757] [PMID: ] - DOI - PubMed
Fischer 2010
    1. Fischer C, Bertelle V, Hohlfeld J, Forcada-Guex M, Stadelmann-Diaw C, Tolsa JF. Nasal trauma due to continuous positive airway pressure in neonates. Archives of Disease in Childhood. Fetal and Neonatal Edition 2010;95(6):F447-51. [PMID: ] - PubMed
GRADEpro GDT [Computer program]
    1. GRADEpro GDT. CD013660, Version accessed prior to 3 October 2022. Hamilton (ON): McMaster University (developed by Evidence Prime), 2022. Available at gradepro.org.
Guyatt 2017
    1. Guyatt GH, Ebrahim S, Alonso-Coello P, Johnston BC, Mathioudakis AG, Briel M, et al. GRADE guidelines 17: assessing the risk of bias associated with missing participant outcome data in a body of evidence. Journal of Clinical Epidemiology 2017;87:14-22. [DOI: 10.1016/j.jclinepi.2017.05.005] [PMID: ] - DOI - PubMed
Hagan 1977
    1. Hagan R, Bryan AC, Bryan MH, Gulston G. Neonatal chest wall afferents and regulation of respiration. Journal of Applied Physiology: Respiratory, Environmental and Exercise Physiology 1977;42(3):362-7. [DOI: 10.1152/jappl.1977.42.3.362] [PMID: ] - DOI - PubMed
Henderson‐Smart 1981
    1. Henderson-Smart DJ. The effect of gestational age on the incidence and duration of recurrent apnoea in newborn babies. Australian Paediatric Journal 1981;17(4):273-6. [DOI: 10.1111/j.1440-1754.1981.tb01957.x] [PMID: ] - DOI - PubMed
Henderson‐Smart 2010a
    1. Henderson-Smart DJ, De Paoli AG. Prophylactic methylxanthine for prevention of apnoea in preterm infants. Cochrane Database of Systematic Reviews 2010, Issue 12. Art. No: CD000432. [DOI: 10.1002/14651858.CD000432.pub2] - DOI - PMC - PubMed
Henderson‐Smart 2010b
    1. Henderson-Smart DJ, De Paoli AG. Methylxanthine treatment for apnoea in preterm infants. Cochrane Database of Systematic Reviews 2010, Issue 12. Art. No: CD000140. [DOI: 10.1002/14651858.CD000140.pub2] - DOI - PMC - PubMed
Higgins 2017
    1. Higgins JP, Altman DG, Sterne JA, editor(s). Chapter 8: Assessing risk of bias in included studies. In: Higgins JP, Churchill R, Chandler J, Cumpston MS, editor(s). Cochrane Handbook for Systematic Reviews of Interventions Version 5.2.0 (updated June 2017). Cochrane, 2017. Available from training.cochrane.org/handbook/archive/v5.2.
Higgins 2019
    1. Higgins JP, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (editors). Cochrane Handbook for Systematic Reviews of Interventions Version 6.0 (updated July 2019). The Cochrane Collaboration, 2019. Available from www.training.cochrane.org/handbook.
Ho 2020a
    1. Ho JJ, Subramaniam P, Davis PG. Continuous positive airway pressure (CPAP) for respiratory distress in preterm infants. Cochrane Database of Systematic Reviews 2020, Issue 10. Art. No: CD002271. [DOI: 10.1002/14651858.CD002271.pub3] - DOI - PMC - PubMed
Ho 2020b
    1. Ho JJ, Subramaniam P, Sivakaanthan A, Davis PG. Early versus delayed continuous positive airway pressure (CPAP) for respiratory distress in preterm infants. Cochrane Database of Systematic Reviews 2020, Issue 10. Art. No: CD002975. [DOI: 10.1002/14651858.CD002975.pub2] - DOI - PMC - PubMed
Huang 2008
    1. Huang WC, Hua YM, Lee CM, Chang CC, Yuh YS. Comparison between bubble CPAP and ventilator-derived CPAP in rabbits. Pediatrics and Neonatology 2008;49(6):223-9. [DOI: 10.1016/S1875-9572(09)60015-2] [PMID: ] - DOI - PubMed
Janvier 2004
    1. Janvier A, Khairy M, Kokkotis A, Cormier C, Messmer D, Barrington KJ. Apnea is associated with neurodevelopmental impairment in very low birth weight infants. Journal of Perinatology: Official Journal of the California Perinatal Association 2004;24(12):763-8. [DOI: 10.1038/sj.jp.7211182] [PMID: ] - DOI - PubMed
Klausner 1996
    1. Klausner JF, Lee AY, Hutchison AA. Decreased imposed work with a new nasal continuous positive airway pressure device. Pediatric Pulmonology 1996;22(3):188-94. [DOI: 10.1002/(SICI)1099-0496(199609)22:3<188::AID-PPUL8>3.0.CO;2-L] [PMID: ] - DOI - PubMed
Krouskop 1975
    1. Krouskop RW, Brown EG, Sweet AY. The early use of continuous positive airway pressure in the treatment of idiopathic respiratory distress syndrome. Journal of Pediatrics 1975;87(2):263-7. [DOI: 10.1016/s0022-3476(75)80599-3] [PMID: ] - DOI - PubMed
Lemyre 2016
    1. Lemyre B, Laughon M, Bose C, Davis PG. Early nasal intermittent positive pressure ventilation (NIPPV) versus early nasal continuous positive airway pressure (NCPAP) for preterm infants. Cochrane Database of Systematic Reviews 2016, Issue 12. Art. No: CD005384. [DOI: 10.1002/14651858.CD005384.pub2] - DOI - PMC - PubMed
Lemyre 2017
    1. Lemyre B, Davis PG, De Paoli AG, Kirpalani H. Nasal intermittent positive pressure ventilation (NIPPV) versus nasal continuous positive airway pressure (NCPAP) for preterm neonates after extubation. Cochrane Database of Systematic Reviews 2017, Issue 2. Art. No: CD003212. [DOI: 10.1002/14651858.CD003212.pub3] - DOI - PMC - PubMed
Miller 1985
    1. Miller MJ, Carlo WA, Martin RJ. Continuous positive airway pressure selectively reduces obstructive apnea in preterm infants. Journal of Pediatrics 1985;106(1):91-4. [DOI: 10.1016/s0022-3476(85)80475-3] [PMID: ] - DOI - PubMed
NICE 2019
    1. National Institute for Health and Care Excellence. Specialist neonatal respiratory care for babies born preterm. (NICE guideline [NG124]). https://www.nice.org.uk/guidance/ng124 (accessed 19 August 2022). - PubMed
Page 2021
    1. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372:n71. [DOI: 10.1136/bmj.n71] [PMID: ] - DOI - PMC - PubMed
Pillekamp 2007
    1. Pillekamp F, Hermann C, Keller T, Gontard A, Kribs A, Roth B. Factors influencing apnea and bradycardia of prematurity - implications for neurodevelopment. Neonatology 2007;91(3):155-61. [DOI: 10.1159/000097446] [PMID: ] - DOI - PubMed
Pillow 2007
    1. Pillow JJ, Hillman N, Moss TJ, Polglase G, Bold G, Beaumont C, et al. Bubble continuous positive airway pressure enhances lung volume and gas exchange in preterm lambs. American Journal of Respiratory and Critical Care Medicine 2007;176(1):63-9. [DOI: 10.1164/rccm.200609-1368OC] [PMID: ] - DOI - PMC - PubMed
PubMed 2022 [Computer program]
    1. PubMed. US National Library of Medicine, accessed 23 September 2022. www.ncbi.nlm.nih.gov/pubmed/.
Review Manager 2020 [Computer program]
    1. Review Manager (RevMan). Version 5.4. Copenhagen: The Cochrane Collaboration, 2020.
Rhodes 1973
    1. Rhodes PG, Hall RT. Continuous positive airway pressure delivered by face mask in infants with the idiopathic respiratory distress syndrome: a controlled study. Pediatrics 1973;52(1):1-5. [PMID: ] - PubMed
Rodriguez 2002
    1. Rodriguez RJ, Martin RJ, Fanaroff AA. Fanaroff and Martin’s Neonatal-Perinatal Medicine: Diseases of the Fetus and Infant. 7th edition. St. Louis, MO: Mosby, 2002.
Sabasi 2021
    1. Sabsabi B, Harrison A, Banfield L, Mukerji A. Nasal intermittent positive pressure ventilation versus continuous positive airway pressure and apnea of prematurity: a systematic review and meta-analysis. American Journal of Perinatology 2022 ;39(12):1314-20. [DOI: 10.1055/s-0040-1722337] [PMID: ] - DOI - PubMed
Schunemann 2013
    1. Schünemann H, Brożek J, Guyatt G, Oxman A, editor(s). Handbook for Grading the Quality of Evidence and the Strength of Recommendations Using the GRADE Approach (updated October 2013). GRADE Working Group, 2013. Available from gdt.guidelinedevelopment.org/app/handbook/handbook.html.
Speidel 1976
    1. Speidel BD, Dunn PM. Use of nasal continuous positive airway pressure to treat severe recurrent apnoea in very preterm infants. Lancet 1976;2(7987):658-60. [DOI: 10.1016/s0140-6736(76)92468-5] [PMID: ] - DOI - PubMed
Subramaniam 2021
    1. Subramaniam P, Ho JJ, Davis PG. Prophylactic or very early initiation of continuous positive airway pressure (CPAP) for preterm infants. Cochrane Database of Systematic Reviews 2021, Issue 10. Art. No: CD002271. [DOI: 10.1002/14651858.CD002271.pub3] - DOI - PMC - PubMed
van Zanten 2014
    1. Zanten HA, Tan RN, Thio M, Man-van Ginkel JM, Zwet EW, Lopriore E, et al. The risk for hyperoxaemia after apnoea, bradycardia and hypoxaemia in preterm infants. Archives of Disease in Childhood. Fetal and Neonatal Edition 2014;99(4):F269-73. [DOI: 10.1136/archdischild-2013-305745] [PMID: ] - DOI - PubMed

References to other published versions of this review

Ho 2020c
    1. Ho JJ, Subramaniam P, Zakarija-Grkovic I, Leong JJ, Lim E, Lok JW. Continuous positive airway pressure (CPAP) for apnoea of prematurity. Cochrane Database of Systematic Reviews 2020, Issue 7. Art. No: CD013660. [DOI: 10.1002/14651858.CD013660] - DOI - PMC - PubMed

Publication types

Associated data