Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2023 Sep 1:243:120334.
doi: 10.1016/j.watres.2023.120334. Epub 2023 Jul 10.

The role of stormwater infrastructure in regional methane emissions

Affiliations
Review

The role of stormwater infrastructure in regional methane emissions

Lorenzo Rovelli et al. Water Res. .

Abstract

Stormwater infrastructure has been recently indicated as a potential hotspot for methane (CH4) emissions. Although local assessments based on direct CH4 measurements are increasingly available, there is currently no standardized approach for evaluating CH4 emissions from different types of stormwater infrastructure, including permanently impounded or fast-draining structures in Urban Drainage Systems (UDS). Therefore, a comparative analysis with wastewater infrastructure systems, such as wastewater treatment plants (WWTPs), is not yet possible. Here, we present a conceptual framework for the first-order quantification and upscaling of CH4 emissions from stormwater infrastructure at local and national scales. We combined in-situ and ex-situ measurements of CH4 emissions with purposely acquired data from selected stormwater facilities to provide initial estimates of CH4 emissions and emission factors for stormwater infrastructure in Germany. The results show that while stormwater infrastructure might emit comparable amounts of CH4 per area as natural and anthropogenically impacted inland waters, it may exhibit higher mean emission factors (up to 7 times) than conventional WWTPs, indicating less efficiency in limiting CH4 emissions than WWTPs. This is particularly true for permanently impounded facilities, which showed substantially higher mean surface CH4 emissions (up to 632 mg m-2 d-1) than fast-draining infrastructure (0.5-1.28 mg m-2 d-1). Permanently impounded sedimentation basins for stormwater management alone may reach up to 60% of the total CH4 emissions originating from WWTPs in Germany. These results are in conflict with the ongoing trend towards increasing implementation of impounded stormwater infrastructure systems, highlighting the urgent need for more extensive assessments of their impact on CH4 dynamics.

Keywords: Emission factors; Fast-draining systems; Impounded systems; Stormwater infrastructure; Water management.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.