Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Jul 24;27(4):844-859.
doi: 10.1123/mc.2022-0122. Print 2023 Oct 1.

Immediate Effects of Real-Time Feedback During Overground Gait Performed Using Inertial Measurement Units on Gait Parameters in Healthy Young Participants: A Cross-Sectional Study

Affiliations

Immediate Effects of Real-Time Feedback During Overground Gait Performed Using Inertial Measurement Units on Gait Parameters in Healthy Young Participants: A Cross-Sectional Study

Takasuke Miyazaki et al. Motor Control. .

Abstract

This cross-sectional study examined the immediate effects of four types of real-time feedback during overground gait performed using inertial measurement units on gait kinematics in healthy young participants. Twelve healthy young participants (mean age: 27.1 years) performed 60-s gait trials with each of the following real-time feedback: walking spontaneously (no feedback trial); increasing the ankle plantar-flexion angle during the late stance (ankle trial); increasing the leg extension angle, defined the location of the ankle joint relative to the hip joint in the sagittal plane, during late stance (leg trial); and increasing the knee flexion angle during the swing phase (knee trial). Tilt angles and accelerations of the pelvis and lower limb segments were measured using seven inertial measurement units pre- and postfeedback trials. The differences in gait parameters pre- and postfeedback according to the types of feedback were compared using one-factor repeated-measures analysis of variance, Friedman test, and post hoc test. Real-time feedback in the ankle trial increased gait speed, step length, and ankle plantar-flexion angle compared to the no feedback trial (p ≤ .001). Meanwhile, real-time feedback in the leg trial increased step length and hip extension angle compared to the no feedback trial (p ≤ .001) and showed a tendency to increase gait speed and leg extension angle. Real-time feedback using inertial measurement units increased gait speed immediately with specific changes in gait kinematics in healthy participants. This study might imply the possibility of clinical application for overground gait training, and further studies are needed to clarify the effectiveness for older people.

Keywords: acceleration; gait analysis; gait training; joint angle; wearable sensor.

PubMed Disclaimer

LinkOut - more resources