Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comment
. 2023 Aug;8(8):1380-1381.
doi: 10.1038/s41564-023-01428-5.

Switching on cyclic di-GMP heterogeneity in Pseudomonas aeruginosa biofilms

Affiliations
Comment

Switching on cyclic di-GMP heterogeneity in Pseudomonas aeruginosa biofilms

Jasper B Gomez et al. Nat Microbiol. 2023 Aug.

Abstract

Pseudomonas aeruginosa drives heterogeneity of cyclic di-GMP signalling in biofilms as a division-of-labour strategy to maximize colonization and dispersal using the protein HecE.

PubMed Disclaimer

Conflict of interest statement

Competing interests

The authors declare no competing interests.

Figures

Fig. 1 |
Fig. 1 |. The HecRE molecular switch regulates P. aeruginosa biofilm development and heterogeneity through c-di-GMP.
On surface encounter, P. aeruginosa attaches and undergoes asymmetric cell division. A motile, spreader cell with low c-di-GMP that colonizes new environments is generated, as well as a second, attached, striker cell with increased intracellular c-di-GMP, which initiates biofilm formation. As the biofilm develops, environmental signals and autoregulation upregulate HecR, which induces high HecE expression in a subpopulation of cells. HecE activates the c-di-GMP synthase, WspR, and inhibits the phosphodiesterase, BifA, increasing intracellular c-di-GMP and biofilm development. Some biofilm bacteria do not induce HecE and are low in c-di-GMP. As the biofilm matures, this bacterial subpopulation disperses to colonize new areas.

Comment on

  • A genetic switch controls Pseudomonas aeruginosa surface colonization.
    Manner C, Dias Teixeira R, Saha D, Kaczmarczyk A, Zemp R, Wyss F, Jaeger T, Laventie BJ, Boyer S, Malone JG, Qvortrup K, Andersen JB, Givskov M, Tolker-Nielsen T, Hiller S, Drescher K, Jenal U. Manner C, et al. Nat Microbiol. 2023 Aug;8(8):1520-1533. doi: 10.1038/s41564-023-01403-0. Epub 2023 Jun 8. Nat Microbiol. 2023. PMID: 37291227

References

    1. Pernal SF Vet. Clin. North Am. Food Anim. Pract 37, 387–400 (2021). - PubMed
    1. Nakahashi W & Feldman MW J. Theor. Biol 348, 65–79 (2014). - PubMed
    1. Muñoz-Dorado J, Marcos-Torres FJ, García-Bravo E, Moraleda-Muñoz A & Pérez J Front. Microbiol 7, 781 (2016). - PMC - PubMed
    1. van Gestel J, Vlamakis H & Kolter R PLoS Biol. 13, e1002141 (2015). - PMC - PubMed
    1. Rossetti V & Bagheri HC Proc. R. Soc. B Biol. Sci 279, 3457–3466 (2012). - PMC - PubMed

Publication types