Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Jul 24;258(3):50.
doi: 10.1007/s00425-023-04200-5.

Functional characterization of DcMYB11, an R2R3 MYB associated with the purple pigmentation of carrot petiole

Affiliations

Functional characterization of DcMYB11, an R2R3 MYB associated with the purple pigmentation of carrot petiole

Vincenzo D'Amelia et al. Planta. .

Abstract

DcMYB11, an R2R3 MYB gene associated with petiole anthocyanin pigmentation in carrot, was functionally characterized. A putative enhancer sequence is able to increase DcMYB11 activity. The accumulation of anthocyanin pigments can exhibit different patterns across plant tissues and crop varieties. This variability allowed the investigation of the molecular mechanisms behind the biosynthesis of these pigments in several plant species. Among crops, carrots have a well-defined anthocyanin pigmentation pattern depending on the genic background. In this work, we report on the discovery of DNA structural differences affecting the activity of an R2R3 MYB (encoded by DcMYB11) involved in anthocyanin regulation in carrot petiole. To this end, we first verified the function of DcMYB11 using heterologous systems and identified three different alleles which may explain differences in petiole pigmentation. Characterization of the DcMYB11 alleles at the 5' upstream sequence unveiled a sequence that functions as a putative enhancer. In conclusion, this study provides novel insight into the molecular mechanisms controlling anthocyanin accumulation in carrot. By these outcomes, we expanded our knowledge on the cis-regulatory sequences in plants.

Keywords: Anthocyanins; Carrot petiole; Daucus carota; Regulatory sequences; Transcription factor.

PubMed Disclaimer

References

    1. Agati G, Guidi L, Landi M, Tattini M (2021) Anthocyanins in photoprotection: knowing the actors in play to solve this complex ecophysiological issue. New Phytol 232:2228–2235. https://doi.org/10.1111/nph.17648 - DOI - PubMed - PMC
    1. Albert NW, Lewis DH, Zhang H, Schwinn KE, Jameson PE, Davies KM (2011) Members of an R2R3-MYB transcription factor family in Petunia are developmentally and environmentally regulated to control complex floral and vegetative pigmentation patterning. Plant J 65:771–784. https://doi.org/10.1111/j.1365-313X.2010.04465.x - DOI - PubMed
    1. Albert NW, Davies KM, Lewis DH, Zhang H, Montefiori M, Brendolise C, Boase MR, Ngo H, Jameson PE, Schwinn KE (2014) A conserved network of transcriptional activators and repressors regulates anthocyanin pigmentation in eudicots. Plant Cell 26:962–980. https://doi.org/10.1105/tpc.113.122069 - DOI - PubMed - PMC
    1. Bai C, Elledge SJ (1997) Gene identification using the yeast two-hybrid system. Meth Enzymol 283:141–156. https://doi.org/10.1016/s0076-6879(97)83013-3 - DOI
    1. Bannoud F, Ellison S, Paolinelli M, Horejsi T, Senalik D, Fanzone M, Iorizzo M, Simon PW, Cavagnaro PF (2019) Dissecting the genetic control of root and leaf tissue-specific anthocyanin pigmentation in carrot (Daucus carota L.). Theor Appl Genet 132:2485–2507. https://doi.org/10.1007/s00122-019-03366-5 - DOI - PubMed

LinkOut - more resources